An Analysis of Modern Pollen Rain on an Elevational Gradient in Southern Peru

The sensitivity of pollen as an indicator of elevation in neotropical lowland and Andean forests was measured using modern pollen samples collected from moss-polsters along a transect between 340 m and 3530 m elevation and from surface sediments in lowland swamps (240 m) of Madre de Dios, Peru. A bl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Tropical Ecology. - Cambridge University Press, 1985. - 20(2004), 1, Seite 113-124
1. Verfasser: Weng, Chengyu (VerfasserIn)
Weitere Verfasser: Bush, Mark B., Silman, Miles R.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of Tropical Ecology
Schlagworte:Andes Elevation Moss Polster Palaeoecology Peru South America Transect Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST05364848X
003 DE-627
005 20240621222552.0
007 cr uuu---uuuuu
008 150324s2004 xx |||||o 00| ||eng c
035 |a (DE-627)JST05364848X 
035 |a (JST)4091890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Weng, Chengyu  |e verfasserin  |4 aut 
245 1 3 |a An Analysis of Modern Pollen Rain on an Elevational Gradient in Southern Peru 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The sensitivity of pollen as an indicator of elevation in neotropical lowland and Andean forests was measured using modern pollen samples collected from moss-polsters along a transect between 340 m and 3530 m elevation and from surface sediments in lowland swamps (240 m) of Madre de Dios, Peru. A blind study, using samples collected from the same transect in the following year, provided a test of reproducibility. The results show (1) clear elevational distribution patterns and (2) the ability of calibration data to predict the altitude of the blind samples. Characteristic associations of pollen taxa are found under differing hydrologies and elevations. The floodplain pollen assemblages are characterized by abundant Mauritia, Sloanea, Ficus, Iriartea and Arecaceae pollen types. At higher elevations, these lowland types decrease or are absent. Alchornea, Urticaceae/Moraceae, Bignoniaceae and Cecropia are dominant components of the pollen rain of the low-elevation zone (< 1000 m). Acalypha, Alchornea, Cecropia, Rubiaceae and Urticaceae/Moraceae are important between 1000 m and 1600 m elevation. Pollen of Hedyosmum, Alnus, Poaceae and Combretaceae/Melastomataceae are abundant between 1600 m and 2000 m. Cecropia pollen dominates samples from low- to mid-elevation disturbed forests. Alnus pollen is most abundant, and Poaceae becomes rare, between 2000 and 2700 m. At high elevations above 2700 m, Asteraceae, Poaceae, Polylepis, Muehlenbeckia-type and Myrsine pollen are dominant. Statistical analysis of the data set using Detrended Correspondence Analysis (DCA) shows a precise correlation between community composition and elevation. The DCA axis 1 values are strongly correlated with sample elevation, exhibiting a linear relationship $(r^2 = 0.904)$ . The results provide an estimate of the sensitivity of pollen analysis in the Neotropics as a proxy for measuring elevation and, by inference, temperature. 
540 |a Copyright 2004 Cambridge University Press 
650 4 |a Andes 
650 4 |a Elevation 
650 4 |a Moss Polster 
650 4 |a Palaeoecology 
650 4 |a Peru 
650 4 |a South America 
650 4 |a Transect 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Palynology  |x Pollen 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Taxa 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands  |x Swamps 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Cloud forests 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Montane forests 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Petrology  |x Sedimentary petrology  |x Sediments 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems  |x Forest habitats 
655 4 |a research-article 
700 1 |a Bush, Mark B.  |e verfasserin  |4 aut 
700 1 |a Silman, Miles R.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Tropical Ecology  |d Cambridge University Press, 1985  |g 20(2004), 1, Seite 113-124  |w (DE-627)266015972  |w (DE-600)1466679-0  |x 14697831  |7 nnns 
773 1 8 |g volume:20  |g year:2004  |g number:1  |g pages:113-124 
856 4 0 |u https://www.jstor.org/stable/4091890  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_161 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 20  |j 2004  |e 1  |h 113-124