Measuring Performances of Multiple-Channel Queueing Systems with Imprecise Data: A Membership Function Approach

This paper proposes a mixed integer nonlinear programming (MINLP) approach to measure the system performances of multiple-channel queueing models with imprecise data. The main idea is to transform a multiple-channel queue with imprecise data to a family of conventional crisp multiple-channel queues...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Operational Research Society. - Taylor & Francis, Ltd.. - 59(2008), 3, Seite 381-387
1. Verfasser: Chen, S-P (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:The Journal of the Operational Research Society
Schlagworte:fuzzy theory queueing theory mixed integer nonlinear programming performance measures Mathematics Philosophy Applied sciences Behavioral sciences
LEADER 01000caa a22002652 4500
001 JST050581279
003 DE-627
005 20240621182203.0
007 cr uuu---uuuuu
008 150324s2008 xx |||||o 00| ||eng c
035 |a (DE-627)JST050581279 
035 |a (JST)30132759 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, S-P  |e verfasserin  |4 aut 
245 1 0 |a Measuring Performances of Multiple-Channel Queueing Systems with Imprecise Data: A Membership Function Approach 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This paper proposes a mixed integer nonlinear programming (MINLP) approach to measure the system performances of multiple-channel queueing models with imprecise data. The main idea is to transform a multiple-channel queue with imprecise data to a family of conventional crisp multiple-channel queues by applying the α-cut approach in fuzzy theory. On the basis of α-cut representation and the extension principle, two pairs of parametric MINLP are formulated to describe the family of crisp multiple-channel queues, via which the membership functions of the performance measures are derived. To demonstrate the validity of the proposed procedure, a real-world case of multiple-channel fuzzy queue is investigated successfully. Since the performance measures are expressed by membership functions rather than by crisp values, the fuzziness of input information is completed conserved. Thus, the results obtained from the proposed approach can represent the system more accurately, and more information is provided for system design in practice. 
540 |a Copyright 2008 Operational Research Society Ltd 
650 4 |a fuzzy theory 
650 4 |a queueing theory 
650 4 |a mixed integer nonlinear programming 
650 4 |a performance measures 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical functions  |x Indicator functions  |x Membership functions 
650 4 |a Philosophy  |x Logic  |x Logical topics  |x Formal logic  |x Mathematical logic  |x Mathematical set theory  |x Mathematical sets  |x Fuzzy sets 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical models  |x Parametric models 
650 4 |a Applied sciences  |x Computer science  |x Computer engineering  |x Computer technology  |x Computer systems 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Decision theory  |x Operations research 
650 4 |a Philosophy  |x Logic  |x Metalogic  |x Logical truth  |x Truth value  |x Fuzziness 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes  |x Queueing theory 
650 4 |a Philosophy  |x Logic  |x Logical topics  |x Formal logic  |x Mathematical logic  |x Mathematical set theory  |x Axiomatic set theory  |x Fuzzy set theory 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Number theory  |x Numbers  |x Real numbers  |x Rational numbers  |x Integers 
650 4 |a Applied sciences  |x Research methods  |x Modeling 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical functions  |x Indicator functions  |x Membership functions 
650 4 |a Philosophy  |x Logic  |x Logical topics  |x Formal logic  |x Mathematical logic  |x Mathematical set theory  |x Mathematical sets  |x Fuzzy sets 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical models  |x Parametric models 
650 4 |a Applied sciences  |x Computer science  |x Computer engineering  |x Computer technology  |x Computer systems 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Decision theory  |x Operations research 
650 4 |a Philosophy  |x Logic  |x Metalogic  |x Logical truth  |x Truth value  |x Fuzziness 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes  |x Queueing theory 
650 4 |a Philosophy  |x Logic  |x Logical topics  |x Formal logic  |x Mathematical logic  |x Mathematical set theory  |x Axiomatic set theory  |x Fuzzy set theory 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Number theory  |x Numbers  |x Real numbers  |x Rational numbers  |x Integers 
650 4 |a Applied sciences  |x Research methods  |x Modeling 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t The Journal of the Operational Research Society  |d Taylor & Francis, Ltd.  |g 59(2008), 3, Seite 381-387  |w (DE-627)320465098  |w (DE-600)2007775-0  |x 14769360  |7 nnns 
773 1 8 |g volume:59  |g year:2008  |g number:3  |g pages:381-387 
856 4 0 |u https://www.jstor.org/stable/30132759  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_187 
912 |a GBV_ILN_224 
912 |a GBV_ILN_285 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2935 
912 |a GBV_ILN_2940 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 59  |j 2008  |e 3  |h 381-387