Studies on the Vegetation of Mauritius: III. The Structure and Development of the Upland Climax Forest

The upland climax forest is now reduced to an area of about 18 sq. km. in isolated blocks, the least altered of which is that in Crown Land Macabe situated above the Black River Gorges at an altitude of 550 m. above sea-level. The climate and soils are briefly described, and an account is given of t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Ecology. - Cambridge University Press, 1913. - 29(1941), 1, Seite 127-160
1. Verfasser: Vaughan, R. E. (VerfasserIn)
Weitere Verfasser: Wiehe, P. O.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1941
Zugriff auf das übergeordnete Werk:Journal of Ecology
Schlagworte:Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST046226443
003 DE-627
005 20240621122428.0
007 cr uuu---uuuuu
008 150324s1941 xx |||||o 00| ||eng c
024 7 |a 10.2307/2256223  |2 doi 
035 |a (DE-627)JST046226443 
035 |a (JST)2256223 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vaughan, R. E.  |e verfasserin  |4 aut 
245 1 0 |a Studies on the Vegetation of Mauritius: III. The Structure and Development of the Upland Climax Forest 
264 1 |c 1941 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The upland climax forest is now reduced to an area of about 18 sq. km. in isolated blocks, the least altered of which is that in Crown Land Macabe situated above the Black River Gorges at an altitude of 550 m. above sea-level. The climate and soils are briefly described, and an account is given of the methods being used to obtain some meteorological data for the internal climate of the forest. The structure of the forest is studied firstly by means of ten plots of 1000 sq. metres, each taken at random; all phanerophytes 10 cm. diameter and above are measured and sorted into fourteen diameter classes. From the data obtained size-class frequency curves for the whole population and for certain species are drawn, and the abnormalities shown by some species of large trees are discussed. The number of individuals per hectare 10 cm. diameter and above is found to be 1710 and the total phanerophytic population per hectare is estimated at 208,510. Stratification and floristic composition are studied in more detail by means of a 1000 sq. metre plot in which all species 50 cm. high and above, or 1 cm. in diameter and over, are charted to scale. It is found that the woody plants may be grouped into four distinct strata: α-mesophanerophytes, above 15 m.; β-mesophanerophytes, 8-15 m.; microphanerophytes, 2-8 m.; and nanophanerophytes, 0.5-2 m. high. The family Sapotaceae is dominant in the open or top stratum of large trees which comprises about twelve species. The second closed stratum is composed of an extremely complex and varied assemblage of small trees, underneath which the third and fourth open strata of under-trees and shrubs develop. The ground flora is investigated by means of small quadrats of 1-4 sq. metres, the mean number of seedlings being 19.08 per sq. metre. Herbaceous plants are few and scattered but great variety is observed in life forms; the families Orchidaceae and Urticaceae are dominant. Ferns, mosses and hepatics are very rare. The development of the forest is studied by 1000 sq. metre plots laid down at different stages of the sere, and species/area curves are prepared from the data contained. The climax forest is shown to have developed from a phanerophytic heath community. The status of the forest is discussed, and its general structure compared with tropical forests in British Guiana, Sarawak and Southern Nigeria. The formation is probably akin to the Tropical Lower-Montane Evergreen Rainforest of Burtt Davy (1938). 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Climax forests 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Dendrology  |x Trees 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation  |x Vegetation structure  |x Plant strata  |x Vegetation canopies  |x Forest canopy 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Highlands 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Dendrology  |x Shrubs 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant morphology  |x Plant vegetation  |x Leaves 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Montane forests 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Biomes  |x Shrublands  |x Heathlands 
655 4 |a research-article 
700 1 |a Wiehe, P. O.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Ecology  |d Cambridge University Press, 1913  |g 29(1941), 1, Seite 127-160  |w (DE-627)311851835  |w (DE-600)2004136-6  |x 13652745  |7 nnns 
773 1 8 |g volume:29  |g year:1941  |g number:1  |g pages:127-160 
856 4 0 |u https://www.jstor.org/stable/2256223  |3 Volltext 
856 4 0 |u https://doi.org/10.2307/2256223  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 29  |j 1941  |e 1  |h 127-160