Effects of Topographic Heterogeneity on Tree Species Richness and Stand Dynamics in a Subtropical Forest in Okinawa Island, Southern Japan

1 We used a structural equation model (SEM) to clarify the relationship between productivity and species richness across a topographic gradient in a subtropical forest in southern Japan and to quantify the direct and indirect effects of topographic position and soil properties on community attribute...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Ecology. - Cambridge University Press, 1913. - 92(2004), 2, Seite 230-240
1. Verfasser: Kubota, Yasuhiro (VerfasserIn)
Weitere Verfasser: Murata, Hirofumi, Kikuzawa, Kihachiro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of Ecology
Schlagworte:Competition Density effect Monsoon wind Productivity Soil nutrient Structural equation model Tree fern Turnover time Typhoon Wind stress mehr... Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST046214216
003 DE-627
005 20240621122246.0
007 cr uuu---uuuuu
008 150324s2004 xx |||||o 00| ||eng c
035 |a (DE-627)JST046214216 
035 |a (JST)3599588 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kubota, Yasuhiro  |e verfasserin  |4 aut 
245 1 0 |a Effects of Topographic Heterogeneity on Tree Species Richness and Stand Dynamics in a Subtropical Forest in Okinawa Island, Southern Japan 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a 1 We used a structural equation model (SEM) to clarify the relationship between productivity and species richness across a topographic gradient in a subtropical forest in southern Japan and to quantify the direct and indirect effects of topographic position and soil properties on community attributes. 2 Higher soil nitrogen on ridges was associated with low soil pH and high soil organic matter, but differences in soil chemistry were small compared with those observed in tropical forests. 3 Species richness increased from the valley, via slopes, to ridges. Understorey and microphyllous species, both of which are typically found in gaps or in windy sites, were more abundant on slopes and ridges than in the valley. Habitat preferences of the species, reflecting shade/drought tolerance rather than soil fertility, may be a primary cause of differences in species richness between the topographic types. 4 The total effect of species richness on biomass increment was greater than that of tree density, and biomass increment increased linearly with species richness. This, together with the fact that combined effects of topography, soil properties and ground flora on biomass increment were comparable with that of tree density, indicates that the relationship was caused by habitat heterogeneity rather than a density effect. 5 Frequent disturbances and chronic wind stress resulted in higher mortality and a greater loss of biomass, especially on the ridges, and probably prevented species with different functional traits (e.g. maximum height) from competing for light. 6 Topographic variation therefore appears to lead to structural/compositional heterogeneity within this subtropical forest, enabling the occurrence of a wider range of species. The growth and survival of a variety of species with different functional traits are diversified by environmental conditions along the topographic position. This causes variation in productivity between the topographic types, and suggests that functional resilience associated with species richness contributes to high productivity. 
540 |a Copyright 2004 British Ecological Society 
650 4 |a Competition 
650 4 |a Density effect 
650 4 |a Monsoon wind 
650 4 |a Productivity 
650 4 |a Soil nutrient 
650 4 |a Structural equation model 
650 4 |a Tree fern 
650 4 |a Turnover time 
650 4 |a Typhoon 
650 4 |a Wind stress 
650 4 |a Biological sciences  |x Ecology  |x Biomass 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Dendrology  |x Trees 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Landforms  |x Erosional landforms  |x Valleys 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Rain forests  |x Tropical rain forests 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Sloping terrain 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Ecology  |x Ecological modeling  |x Habitat Heterogeneity 
655 4 |a research-article 
700 1 |a Murata, Hirofumi  |e verfasserin  |4 aut 
700 1 |a Kikuzawa, Kihachiro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Ecology  |d Cambridge University Press, 1913  |g 92(2004), 2, Seite 230-240  |w (DE-627)311851835  |w (DE-600)2004136-6  |x 13652745  |7 nnns 
773 1 8 |g volume:92  |g year:2004  |g number:2  |g pages:230-240 
856 4 0 |u https://www.jstor.org/stable/3599588  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 92  |j 2004  |e 2  |h 230-240