Implementations of the Monte Carlo EM Algorithm

The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most flexible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is throu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Computational and Graphical Statistics. - American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America, 1992. - 10(2001), 3, Seite 422-439
1. Verfasser: Levine, Richard A. (VerfasserIn)
Weitere Verfasser: Casella, George
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:Journal of Computational and Graphical Statistics
Schlagworte:Generalized linear mixed models Gibbs sampler Importance sampling Markov chain Monte Carlo Metropolis-Hastings algorithm Regenerative simulation Renewal theory Mathematics Applied sciences Social sciences
LEADER 01000caa a22002652 4500
001 JST045794596
003 DE-627
005 20240621114828.0
007 cr uuu---uuuuu
008 150324s2001 xx |||||o 00| ||eng c
035 |a (DE-627)JST045794596 
035 |a (JST)1391097 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Levine, Richard A.  |e verfasserin  |4 aut 
245 1 0 |a Implementations of the Monte Carlo EM Algorithm 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most flexible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as the Gibbs and Metropolis-Hastings samplers. Although MCMC estimation presents a tractable solution to problems where the E-step is not available in closed form, two issues arise when implementing this MCEM routine: (1) how do we minimize the computational cost in obtaining an MCMC sample? and (2) how do we choose the Monte Carlo sample size? We address the first question through an application of importance sampling whereby samples drawn during previous EM iterations are recycled rather than running an MCMC sampler each MCEM iteration. The second question is addressed through an application of regenerative simulation. We obtain approximate independent and identical samples by subsampling the generated MCMC sample during different renewal periods. Standard central limit theorems may thus be used to gauge Monte Carlo error. In particular, we apply an automated rule for increasing the Monte Carlo sample size when the Monte Carlo error overwhelms the EM estimate at any given iteration. We illustrate our MCEM algorithm through analyses of two datasets fit by generalized linear mixed models. As a part of these applications, we demonstrate the improvement in computational cost and efficiency of our routine over alternative MCEM strategies. 
540 |a Copyright 2001 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 
650 4 |a Generalized linear mixed models 
650 4 |a Gibbs sampler 
650 4 |a Importance sampling 
650 4 |a Markov chain Monte Carlo 
650 4 |a Metropolis-Hastings algorithm 
650 4 |a Regenerative simulation 
650 4 |a Renewal theory 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes  |x Markov processes  |x Markov chains 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Measures of variability  |x Sample size 
650 4 |a Mathematics  |x Applied mathematics  |x Analytics  |x Analytical estimating  |x Maximum likelihood estimation 
650 4 |a Applied sciences  |x Electronics  |x Electronic equipment  |x Electronic control  |x Burn in 
650 4 |a Social sciences  |x Human geography  |x Political geography  |x Metropolitan areas 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Error rates 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Statistical theories  |x Central limit theorem 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical results  |x Statistical properties  |x Estimate reliability  |x Confidence interval 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Inferential statistics  |x Statistical estimation  |x Estimation methods  |x Estimators 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions  |x Probability distributions  |x Gaussian distributions 
655 4 |a research-article 
700 1 |a Casella, George  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Computational and Graphical Statistics  |d American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America, 1992  |g 10(2001), 3, Seite 422-439  |w (DE-627)320519414  |w (DE-600)2014382-5  |x 15372715  |7 nnns 
773 1 8 |g volume:10  |g year:2001  |g number:3  |g pages:422-439 
856 4 0 |u https://www.jstor.org/stable/1391097  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_224 
912 |a GBV_ILN_285 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2938 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4392 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 10  |j 2001  |e 3  |h 422-439