Watershed Effects on Chemical Properties of Sediment and Primary Consumption in Estuarine Tidal Flats: Importance of Watershed Size and Food Selectivity by Macrobenthos

Paniculate organic matter transported from rivers to estuaries (POM R ) varies quantitatively and qualitatively across estuaries; however, a lack of comparative studies poses a challenge in general understanding of responses of estuarine food webs to POM R input. We studied 20 estuarine tidal flats...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecosystems. - Springer Science + Business Media. - 13(2010), 2, Seite 328-337
1. Verfasser: Sakamaki, Takashi (VerfasserIn)
Weitere Verfasser: Shum, Jennifer Y. T., Richardson, John S.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Ecosystems
Schlagworte:Physical sciences Biological sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST029797322
003 DE-627
005 20240620181904.0
007 cr uuu---uuuuu
008 150324s2010 xx |||||o 00| ||eng c
035 |a (DE-627)JST029797322 
035 |a (JST)40603653 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sakamaki, Takashi  |e verfasserin  |4 aut 
245 1 0 |a Watershed Effects on Chemical Properties of Sediment and Primary Consumption in Estuarine Tidal Flats: Importance of Watershed Size and Food Selectivity by Macrobenthos 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Paniculate organic matter transported from rivers to estuaries (POM R ) varies quantitatively and qualitatively across estuaries; however, a lack of comparative studies poses a challenge in general understanding of responses of estuarine food webs to POM R input. We studied 20 estuarine tidal flats of the Pacific Northwest coast of North America, with watershed areas ranging from 7 to 8000 km². We used carbon-stable isotope (δ¹³C) to test the hypothesis that the nutritional contribution of P0M R to macrobenthos is proportional to relative abundances of POM R in tidal flat sediments. The predominant origin of total POM (TPOM) in tidal flat sediments generally shifted from marine-origin POM (POM M ) to POM R as watershed area increased; however, terrestrial-origin POM R with high C/N predominated sediment TPOM even in estuaries with small watershed areas. Some macrobenthos species assimilated POM sources in proportion to sediment TPOM composition, and incorporated POM R in POM R -predominant sediments. These species were considered to have low food selectivity; however, the relative nutritional contribution of POM R to these macrobenthos was still lower than the fraction of POM R in sediment TPOM. Other species disproportionately utilized POM M and/or benthic microalgae regardless of the relative abundance of P0M R , indicating their high food selectivity. The species-specific, low-or highfood selectivity was likely linked with depositfeeding and filter-feeding, respectively. Hence, our hypothesis was supported conditionally. Our findings indicate that watershed area, relative abundance of POM R in an estuary, and food selectivity of estuarine species are key factors controlling the tightness of linkage between watersheds and estuarine food webs. 
540 |a © 2010 Springer Science+Business Media, LLC 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Petrology  |x Sedimentary petrology  |x Sediments 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Estuaries 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands  |x Tidal flats 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Geologic provinces  |x Structural basins  |x Watersheds 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Phycology  |x Algae  |x Microalgae 
650 4 |a Biological sciences  |x Ecology  |x Ecological processes  |x Ecosystem dynamics  |x Trophic dynamics  |x Trophic relationships  |x Food webs 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Aquatic ecosystems  |x Marine ecosystems 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Nonmetals  |x Carbon  |x Carbon isotopes 
650 4 |a Applied sciences  |x Food science  |x Foodstuffs  |x Food 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Aquatic ecosystems  |x Freshwater ecosystems 
655 4 |a research-article 
700 1 |a Shum, Jennifer Y. T.  |e verfasserin  |4 aut 
700 1 |a Richardson, John S.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecosystems  |d Springer Science + Business Media  |g 13(2010), 2, Seite 328-337  |w (DE-627)270937773  |w (DE-600)1478731-3  |x 14350629  |7 nnns 
773 1 8 |g volume:13  |g year:2010  |g number:2  |g pages:328-337 
856 4 0 |u https://www.jstor.org/stable/40603653  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_250 
912 |a GBV_ILN_267 
912 |a GBV_ILN_281 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2070 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 13  |j 2010  |e 2  |h 328-337