Regional Patterns of Decomposition and Primary Production Rates in the U.S. Great Plains

Warmer regions generally exhibit greater rates of soil respiration and organic matter decomposition than colder regions. In the Great Plains of the United States, soil organic matter declines from the northern part of the region to the south, suggesting greater decomposition rates in areas with warm...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecology. - Duke University Press. - 83(2002), 2, Seite 320-327
1. Verfasser: Epstein, Howard E. (VerfasserIn)
Weitere Verfasser: Burke, Ingrid C., Lauenroth, William K.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:Ecology
Schlagworte:Aboveground Net Primary Production Areal Patterns Carbon Dynamics Decomposition Grasslands Great Plains (USA) Precipitation Regional Scale Soil Organic Matter Soil Texture mehr... Temperature Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST028419529
003 DE-627
005 20240620161819.0
007 cr uuu---uuuuu
008 150324s2002 xx |||||o 00| ||eng c
024 7 |a 10.2307/2680016  |2 doi 
035 |a (DE-627)JST028419529 
035 |a (JST)2680016 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Epstein, Howard E.  |e verfasserin  |4 aut 
245 1 0 |a Regional Patterns of Decomposition and Primary Production Rates in the U.S. Great Plains 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Warmer regions generally exhibit greater rates of soil respiration and organic matter decomposition than colder regions. In the Great Plains of the United States, soil organic matter declines from the northern part of the region to the south, suggesting greater decomposition rates in areas with warmer temperatures. Our study used a regional data set of aboveground net primary production, soil organic carbon, soil texture, and climate to evaluate the environmental controls over areal patterns in decomposition rates, (k; expressed as grams per year per gram of initial mass), throughout the U.S. Great Plains. We conducted multiple regression analyses of steady-state k with respect to mean annual temperature, mean annual precipitation, and percentage soil clay content to examine both the combined and individual effects of these independent variables on regional decomposition rates. Our results indicated that precipitation contributes more than either temperature or soil texture to areal patterns of decomposition rates in the U.S. Great Plains, explaining >30% of the areal variability in k. Decomposition rates increased with increasing precipitation and with decreasing soil clay content. Temperature explained <8% of the regional variability in k. Ancillary analyses that related temperature and aboveground net primary production in the region indicated that plant productivity declines with increasing temperatures. This suggests that the reduction in soil organic matter to the south in the U.S. Great Plains may be due to reduced plant inputs rather than to increases in decomposition rates. The response of decomposition to temperature is probably constrained by moisture in this water-limited region. Therefore, changes in decomposition rates resulting from temperature dynamics are likely to be minimal unless they are accompanied by sufficient changes in precipitation. 
540 |a Copyright 2002 Ecological Society of America 
650 4 |a Aboveground Net Primary Production 
650 4 |a Areal Patterns 
650 4 |a Carbon Dynamics 
650 4 |a Decomposition 
650 4 |a Grasslands 
650 4 |a Great Plains (USA) 
650 4 |a Precipitation 
650 4 |a Regional Scale 
650 4 |a Soil Organic Matter 
650 4 |a Soil Texture 
650 4 |a Temperature 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Edaphology  |x Soil ecology 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Pedology  |x Soil composition  |x Soil organic matter 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands  |x Plains 
650 4 |a Physical sciences  |x Chemistry  |x Chemical reactions  |x Chemical processes  |x Chemical decomposition  |x Thermal decomposition 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agrology  |x Soil physics  |x Soil temperature regimes 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Organic soils 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Edaphology  |x Soil ecology  |x Soil components  |x Soil organic carbon 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Grassland soils 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Edaphology  |x Soil ecology  |x Soil characteristics  |x Soil texture 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Special Feature-Regional Ecological Analysis 
655 4 |a research-article 
700 1 |a Burke, Ingrid C.  |e verfasserin  |4 aut 
700 1 |a Lauenroth, William K.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecology  |d Duke University Press  |g 83(2002), 2, Seite 320-327  |w (DE-627)311927165  |w (DE-600)2010140-5  |x 19399170  |7 nnns 
773 1 8 |g volume:83  |g year:2002  |g number:2  |g pages:320-327 
856 4 0 |u https://www.jstor.org/stable/2680016  |3 Volltext 
856 4 0 |u https://doi.org/10.2307/2680016  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 83  |j 2002  |e 2  |h 320-327