Scale-Dependent Predator-Prey Interactions: The Hierarchical Spatial Distribution of Seabirds and Prey

It has been suggested that the spatial distribution of many marine pelagic organisms can be described by a hierarchical patch structure. Here, we present evidence for a hierarchical spatial distribution of murres (Uria spp.) foraging on capelin (Mallotus villosus) in the Barents Sea. We found three...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecology. - Duke University Press. - 81(2000), 3, Seite 773-783
1. Verfasser: Fauchald, Per (VerfasserIn)
Weitere Verfasser: Erikstad, Kjell Einar, Skarsfjord, Hege
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Ecology
Schlagworte:Barents Sea Capelin Foraging Hierarchical Patch Structure Mallotus villosus Murre Predator-Prey Scale Seabird Spatial Distribution mehr... Uria Biological sciences Applied sciences Physical sciences Mathematics Information science Behavioral sciences
LEADER 01000caa a22002652 4500
001 JST028359275
003 DE-627
005 20240620160901.0
007 cr uuu---uuuuu
008 150324s2000 xx |||||o 00| ||eng c
024 7 |a 10.2307/177376  |2 doi 
035 |a (DE-627)JST028359275 
035 |a (JST)177376 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fauchald, Per  |e verfasserin  |4 aut 
245 1 0 |a Scale-Dependent Predator-Prey Interactions: The Hierarchical Spatial Distribution of Seabirds and Prey 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a It has been suggested that the spatial distribution of many marine pelagic organisms can be described by a hierarchical patch structure. Here, we present evidence for a hierarchical spatial distribution of murres (Uria spp.) foraging on capelin (Mallotus villosus) in the Barents Sea. We found three distinct levels of patchiness. At the largest level we found spatial structures with a characteristic scale of >300 km, and a spatial overlap between murre and capelin. Within the large-scale structures, we found medium-scale patches with a characteristic scale of ∼ 50 km, and an overlap between the patches of murre and capelin. Within the medium-scale patches we found small-scale patches with a characteristic scale of ∼ 3 km. At the smallest scale there was no overlap between patches of capelin and murre. Our results indicate that murres actively track the spatial distribution of capelin at several scales. We suggest that murres use a strategy where the search pattern reflects the hierarchical properties of the prey system. Under this hypothesis the predator searches for large-scale patches by using long travel distances and low turning frequency. Once within a large-scale patch, the predator starts searching for smaller scale patches by using shorter travel distances and higher turning frequencies. Such a search pattern will minimize the area to be searched by the predator and move the predator upward in the hierarchical prey system in a stepwise fashion. 
540 |a Copyright 2000 Ecological Society of America 
650 4 |a Barents Sea 
650 4 |a Capelin 
650 4 |a Foraging 
650 4 |a Hierarchical Patch Structure 
650 4 |a Mallotus villosus 
650 4 |a Murre 
650 4 |a Predator-Prey 
650 4 |a Scale 
650 4 |a Seabird 
650 4 |a Spatial Distribution 
650 4 |a Uria 
650 4 |a Biological sciences  |x Ecology  |x Ecological processes  |x Ecosystem dynamics  |x Trophic dynamics  |x Trophic relationships  |x Predation  |x Predators 
650 4 |a Applied sciences  |x Engineering  |x Electrical engineering  |x Signal processing  |x Autocorrelation 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Seas 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Birds  |x Waterfowl  |x Sea birds 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animal anatomy  |x Animal morphology  |x Animal scales  |x Fish scales 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Data distribution  |x Spatial distribution 
650 4 |a Information science  |x Data products  |x Datasets 
650 4 |a Biological sciences  |x Ecology  |x Landscape ecology 
650 4 |a Behavioral sciences  |x Ethology  |x Animal behavior  |x Animal feeding behavior  |x Foraging 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geodesy  |x Cartography  |x Maps 
655 4 |a research-article 
700 1 |a Erikstad, Kjell Einar  |e verfasserin  |4 aut 
700 1 |a Skarsfjord, Hege  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecology  |d Duke University Press  |g 81(2000), 3, Seite 773-783  |w (DE-627)311927165  |w (DE-600)2010140-5  |x 19399170  |7 nnns 
773 1 8 |g volume:81  |g year:2000  |g number:3  |g pages:773-783 
856 4 0 |u https://www.jstor.org/stable/177376  |3 Volltext 
856 4 0 |u https://doi.org/10.2307/177376  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 81  |j 2000  |e 3  |h 773-783