|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
JST010295216 |
003 |
DE-627 |
005 |
20240619194330.0 |
007 |
cr uuu---uuuuu |
008 |
150323s2007 xx |||||o 00| ||eng c |
035 |
|
|
|a (DE-627)JST010295216
|
035 |
|
|
|a (JST)4620508
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
245 |
1 |
0 |
|a Small-Scale Spatial Associations between Artemisia frigida and Potentilla acaulis at Different Intensities of Sheep Grazing
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Questions: The formerly overgrazed Inner Mongolia steppe was subject to retrogressive succession. Today, Artemisiafrigida and Potentilla acaulis are two dominant species in different phases of successive degradation. To investigate the impact of grazing intensity on spatial community structure, we investigated the small-scale spatial association between A.frigida and P. acaulis at zero, light, medium and heavy sheep grazing, and proposed factors involved in the spatial associations between these two species along a grazing intensity gradient. Location: The Inner Mongolia Grassland Ecosystem Research Station of the Chinese Academy of Sciences. Methods: Four grazing intensities were selected: zero, light (1.33 sheep/ha), medium (4.0 sheep/ha) and heavy (6.7 sheep/ha). After 13 years of grazing three 2 m x 2 m quadrats with 100 x 100 cells of size 2 cm x 2 cm were randomly selected in each treatment in July and August 2002. The presence of A. frigida and P. acaulis in each cell was recorded and the positions of the individuals were mapped using Cartesian coordinates in each quadrat. The small-scale spatial associations between A. frigida or P. acaulis were quantified with the L12(d), $J_{12}(d)$ functions (both derived from $K_{12}(d)$ , the former indicating the type of the spatial association, the latter indicating the strength of the spatial association), using Monte Carlo simulations. Results: A.frigida was negatively associated with P. acaulis at short distances (0-100 cm) under zero and light grazing, and negatively or independently under medium and heavy grazing. Increasing grazing intensities suppressed the peak negative associations. More intense grazing enhanced the tendency towards independent distribution of these two species. Conclusions: The small-scale spatial associations between A. frigida and P. acaulis were significantly different at four different intensities of sheep grazing. Grazing disturbance, clonal growth habit of species, and interspecific competition are the main factors leading to a difference of spatial associations between these two species at different grazing intensities.
|
540 |
|
|
|a Copyright 2007 IAVS; Opulus Press Uppsala
|
650 |
|
4 |
|a Artemisia frigida
|
650 |
|
4 |
|a Inner Mongolia
|
650 |
|
4 |
|a Potentilla acaulis
|
650 |
|
4 |
|a Semi-Arid Steppe
|
650 |
|
4 |
|a Sheep Grazing
|
650 |
|
4 |
|a Spatial Association
|
650 |
|
4 |
|a Biological sciences
|x Agriculture
|x Agricultural sciences
|x Animal science
|x Animal nutrition
|x Forage and feed science
|x Grazing management
|x Grazing intensity
|
650 |
|
4 |
|a Biological sciences
|x Agriculture
|x Agricultural sciences
|x Animal science
|x Animal nutrition
|x Forage and feed science
|x Grazing management
|x Zero grazing
|
650 |
|
4 |
|a Biological sciences
|x Biology
|x Botany
|x Plants
|
650 |
|
4 |
|a Biological sciences
|x Agriculture
|x Agricultural sciences
|x Animal science
|x Animal nutrition
|x Animal feeding methods
|x Grazing
|
650 |
|
4 |
|a Biological sciences
|x Ecology
|x Ecosystems
|x Biomes
|x Grasslands
|x Semiarid grasslands
|
650 |
|
4 |
|a Biological sciences
|x Ecology
|x Ecological zones
|x Ecoregions
|x Steppes
|
650 |
|
4 |
|a Biological sciences
|x Biology
|x Biological taxonomies
|x Species
|
650 |
|
4 |
|a Biological sciences
|x Ecology
|x Ecological processes
|x Ecosystem dynamics
|x Trophic dynamics
|x Trophic levels
|x Heterotrophs
|x Herbivores
|
650 |
|
4 |
|a Biological sciences
|x Biology
|x Botany
|x Plant ecology
|x Vegetation
|
650 |
|
4 |
|a Philosophy
|x Metaphysics
|x Ontology
|x Atomism
|x Aggregation
|
655 |
|
4 |
|a research-article
|
700 |
1 |
|
|a Dong, Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nijs, Ivan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bogaert, Jan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Applied Vegetation Science
|d Opulus Press
|g 10(2007), 1, Seite 139-148
|w (DE-627)332167615
|w (DE-600)2053083-3
|x 1654109X
|7 nnns
|
773 |
1 |
8 |
|g volume:10
|g year:2007
|g number:1
|g pages:139-148
|
856 |
4 |
0 |
|u https://www.jstor.org/stable/4620508
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_JST
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_23
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_32
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_63
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_73
|
912 |
|
|
|a GBV_ILN_74
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_95
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_105
|
912 |
|
|
|a GBV_ILN_110
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_121
|
912 |
|
|
|a GBV_ILN_138
|
912 |
|
|
|a GBV_ILN_150
|
912 |
|
|
|a GBV_ILN_151
|
912 |
|
|
|a GBV_ILN_152
|
912 |
|
|
|a GBV_ILN_161
|
912 |
|
|
|a GBV_ILN_165
|
912 |
|
|
|a GBV_ILN_170
|
912 |
|
|
|a GBV_ILN_171
|
912 |
|
|
|a GBV_ILN_187
|
912 |
|
|
|a GBV_ILN_206
|
912 |
|
|
|a GBV_ILN_213
|
912 |
|
|
|a GBV_ILN_224
|
912 |
|
|
|a GBV_ILN_230
|
912 |
|
|
|a GBV_ILN_266
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_293
|
912 |
|
|
|a GBV_ILN_370
|
912 |
|
|
|a GBV_ILN_374
|
912 |
|
|
|a GBV_ILN_602
|
912 |
|
|
|a GBV_ILN_636
|
912 |
|
|
|a GBV_ILN_647
|
912 |
|
|
|a GBV_ILN_702
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2004
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2025
|
912 |
|
|
|a GBV_ILN_2026
|
912 |
|
|
|a GBV_ILN_2027
|
912 |
|
|
|a GBV_ILN_2031
|
912 |
|
|
|a GBV_ILN_2034
|
912 |
|
|
|a GBV_ILN_2036
|
912 |
|
|
|a GBV_ILN_2037
|
912 |
|
|
|a GBV_ILN_2038
|
912 |
|
|
|a GBV_ILN_2039
|
912 |
|
|
|a GBV_ILN_2043
|
912 |
|
|
|a GBV_ILN_2044
|
912 |
|
|
|a GBV_ILN_2048
|
912 |
|
|
|a GBV_ILN_2049
|
912 |
|
|
|a GBV_ILN_2050
|
912 |
|
|
|a GBV_ILN_2055
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2057
|
912 |
|
|
|a GBV_ILN_2059
|
912 |
|
|
|a GBV_ILN_2061
|
912 |
|
|
|a GBV_ILN_2064
|
912 |
|
|
|a GBV_ILN_2065
|
912 |
|
|
|a GBV_ILN_2068
|
912 |
|
|
|a GBV_ILN_2086
|
912 |
|
|
|a GBV_ILN_2088
|
912 |
|
|
|a GBV_ILN_2093
|
912 |
|
|
|a GBV_ILN_2098
|
912 |
|
|
|a GBV_ILN_2106
|
912 |
|
|
|a GBV_ILN_2107
|
912 |
|
|
|a GBV_ILN_2108
|
912 |
|
|
|a GBV_ILN_2110
|
912 |
|
|
|a GBV_ILN_2111
|
912 |
|
|
|a GBV_ILN_2112
|
912 |
|
|
|a GBV_ILN_2113
|
912 |
|
|
|a GBV_ILN_2116
|
912 |
|
|
|a GBV_ILN_2118
|
912 |
|
|
|a GBV_ILN_2119
|
912 |
|
|
|a GBV_ILN_2122
|
912 |
|
|
|a GBV_ILN_2129
|
912 |
|
|
|a GBV_ILN_2143
|
912 |
|
|
|a GBV_ILN_2144
|
912 |
|
|
|a GBV_ILN_2147
|
912 |
|
|
|a GBV_ILN_2148
|
912 |
|
|
|a GBV_ILN_2152
|
912 |
|
|
|a GBV_ILN_2153
|
912 |
|
|
|a GBV_ILN_2188
|
912 |
|
|
|a GBV_ILN_2190
|
912 |
|
|
|a GBV_ILN_2232
|
912 |
|
|
|a GBV_ILN_2336
|
912 |
|
|
|a GBV_ILN_2360
|
912 |
|
|
|a GBV_ILN_2446
|
912 |
|
|
|a GBV_ILN_2470
|
912 |
|
|
|a GBV_ILN_2472
|
912 |
|
|
|a GBV_ILN_2507
|
912 |
|
|
|a GBV_ILN_2522
|
912 |
|
|
|a GBV_ILN_2548
|
912 |
|
|
|a GBV_ILN_2926
|
912 |
|
|
|a GBV_ILN_2939
|
912 |
|
|
|a GBV_ILN_2946
|
912 |
|
|
|a GBV_ILN_2949
|
912 |
|
|
|a GBV_ILN_2951
|
912 |
|
|
|a GBV_ILN_4012
|
912 |
|
|
|a GBV_ILN_4035
|
912 |
|
|
|a GBV_ILN_4037
|
912 |
|
|
|a GBV_ILN_4046
|
912 |
|
|
|a GBV_ILN_4112
|
912 |
|
|
|a GBV_ILN_4125
|
912 |
|
|
|a GBV_ILN_4126
|
912 |
|
|
|a GBV_ILN_4242
|
912 |
|
|
|a GBV_ILN_4246
|
912 |
|
|
|a GBV_ILN_4249
|
912 |
|
|
|a GBV_ILN_4251
|
912 |
|
|
|a GBV_ILN_4305
|
912 |
|
|
|a GBV_ILN_4306
|
912 |
|
|
|a GBV_ILN_4307
|
912 |
|
|
|a GBV_ILN_4313
|
912 |
|
|
|a GBV_ILN_4322
|
912 |
|
|
|a GBV_ILN_4323
|
912 |
|
|
|a GBV_ILN_4324
|
912 |
|
|
|a GBV_ILN_4325
|
912 |
|
|
|a GBV_ILN_4326
|
912 |
|
|
|a GBV_ILN_4328
|
912 |
|
|
|a GBV_ILN_4333
|
912 |
|
|
|a GBV_ILN_4334
|
912 |
|
|
|a GBV_ILN_4335
|
912 |
|
|
|a GBV_ILN_4336
|
912 |
|
|
|a GBV_ILN_4338
|
912 |
|
|
|a GBV_ILN_4346
|
912 |
|
|
|a GBV_ILN_4393
|
912 |
|
|
|a GBV_ILN_4700
|
912 |
|
|
|a GBV_ILN_4753
|
951 |
|
|
|a AR
|
952 |
|
|
|d 10
|j 2007
|e 1
|h 139-148
|