Small-Scale Spatial Associations between Artemisia frigida and Potentilla acaulis at Different Intensities of Sheep Grazing

Questions: The formerly overgrazed Inner Mongolia steppe was subject to retrogressive succession. Today, Artemisiafrigida and Potentilla acaulis are two dominant species in different phases of successive degradation. To investigate the impact of grazing intensity on spatial community structure, we i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Applied Vegetation Science. - Opulus Press. - 10(2007), 1, Seite 139-148
Weitere Verfasser: Dong, Ming, Nijs, Ivan, Bogaert, Jan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Applied Vegetation Science
Schlagworte:Artemisia frigida Inner Mongolia Potentilla acaulis Semi-Arid Steppe Sheep Grazing Spatial Association Biological sciences Philosophy
LEADER 01000caa a22002652 4500
001 JST010295216
003 DE-627
005 20240619194330.0
007 cr uuu---uuuuu
008 150323s2007 xx |||||o 00| ||eng c
035 |a (DE-627)JST010295216 
035 |a (JST)4620508 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
245 1 0 |a Small-Scale Spatial Associations between Artemisia frigida and Potentilla acaulis at Different Intensities of Sheep Grazing 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Questions: The formerly overgrazed Inner Mongolia steppe was subject to retrogressive succession. Today, Artemisiafrigida and Potentilla acaulis are two dominant species in different phases of successive degradation. To investigate the impact of grazing intensity on spatial community structure, we investigated the small-scale spatial association between A.frigida and P. acaulis at zero, light, medium and heavy sheep grazing, and proposed factors involved in the spatial associations between these two species along a grazing intensity gradient. Location: The Inner Mongolia Grassland Ecosystem Research Station of the Chinese Academy of Sciences. Methods: Four grazing intensities were selected: zero, light (1.33 sheep/ha), medium (4.0 sheep/ha) and heavy (6.7 sheep/ha). After 13 years of grazing three 2 m x 2 m quadrats with 100 x 100 cells of size 2 cm x 2 cm were randomly selected in each treatment in July and August 2002. The presence of A. frigida and P. acaulis in each cell was recorded and the positions of the individuals were mapped using Cartesian coordinates in each quadrat. The small-scale spatial associations between A. frigida or P. acaulis were quantified with the L12(d), $J_{12}(d)$ functions (both derived from $K_{12}(d)$ , the former indicating the type of the spatial association, the latter indicating the strength of the spatial association), using Monte Carlo simulations. Results: A.frigida was negatively associated with P. acaulis at short distances (0-100 cm) under zero and light grazing, and negatively or independently under medium and heavy grazing. Increasing grazing intensities suppressed the peak negative associations. More intense grazing enhanced the tendency towards independent distribution of these two species. Conclusions: The small-scale spatial associations between A. frigida and P. acaulis were significantly different at four different intensities of sheep grazing. Grazing disturbance, clonal growth habit of species, and interspecific competition are the main factors leading to a difference of spatial associations between these two species at different grazing intensities. 
540 |a Copyright 2007 IAVS; Opulus Press Uppsala 
650 4 |a Artemisia frigida 
650 4 |a Inner Mongolia 
650 4 |a Potentilla acaulis 
650 4 |a Semi-Arid Steppe 
650 4 |a Sheep Grazing 
650 4 |a Spatial Association 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Animal science  |x Animal nutrition  |x Forage and feed science  |x Grazing management  |x Grazing intensity 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Animal science  |x Animal nutrition  |x Forage and feed science  |x Grazing management  |x Zero grazing 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Animal science  |x Animal nutrition  |x Animal feeding methods  |x Grazing 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Biomes  |x Grasslands  |x Semiarid grasslands 
650 4 |a Biological sciences  |x Ecology  |x Ecological zones  |x Ecoregions  |x Steppes 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
650 4 |a Biological sciences  |x Ecology  |x Ecological processes  |x Ecosystem dynamics  |x Trophic dynamics  |x Trophic levels  |x Heterotrophs  |x Herbivores 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Philosophy  |x Metaphysics  |x Ontology  |x Atomism  |x Aggregation 
655 4 |a research-article 
700 1 |a Dong, Ming  |e verfasserin  |4 aut 
700 1 |a Nijs, Ivan  |e verfasserin  |4 aut 
700 1 |a Bogaert, Jan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Applied Vegetation Science  |d Opulus Press  |g 10(2007), 1, Seite 139-148  |w (DE-627)332167615  |w (DE-600)2053083-3  |x 1654109X  |7 nnns 
773 1 8 |g volume:10  |g year:2007  |g number:1  |g pages:139-148 
856 4 0 |u https://www.jstor.org/stable/4620508  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_165 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2036 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2098 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2926 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
912 |a GBV_ILN_4753 
951 |a AR 
952 |d 10  |j 2007  |e 1  |h 139-148