Inequalities and Positive-Definite Functions Arising from a Problem in Multidimensional Scaling

We solve the following variational problem: Find the maximum of E|X - Y| subject to E|X|2≤ 1, where X and Y are i.i.d. random n-vectors, and |·| is the usual Euclidean norm on Rn. This problem arose from an investigation into multidimensional scaling, a data analytic method for visualizing proximity...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Annals of Statistics. - Institute of Mathematical Statistics. - 22(1994), 1, Seite 406-438
1. Verfasser: Buja, Andreas (VerfasserIn)
Weitere Verfasser: Logan, B. F., Reeds, J. A., Shepp, L. A.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1994
Zugriff auf das übergeordnete Werk:The Annals of Statistics
Schlagworte:Multidimensional scaling maximal expected distance potential theory inequalities positive-definite functions Wiener-Hopf technique Physical sciences Mathematics Information science Behavioral sciences
LEADER 01000caa a22002652 4500
001 JST008993483
003 DE-627
005 20240619180945.0
007 cr uuu---uuuuu
008 150323s1994 xx |||||o 00| ||eng c
035 |a (DE-627)JST008993483 
035 |a (JST)2242461 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a 26D10  |2 MSC 
084 |a 62H99  |2 MSC 
084 |a 42A82  |2 MSC 
084 |a 45E10  |2 MSC 
100 1 |a Buja, Andreas  |e verfasserin  |4 aut 
245 1 0 |a Inequalities and Positive-Definite Functions Arising from a Problem in Multidimensional Scaling 
264 1 |c 1994 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We solve the following variational problem: Find the maximum of E|X - Y| subject to E|X|2≤ 1, where X and Y are i.i.d. random n-vectors, and |·| is the usual Euclidean norm on Rn. This problem arose from an investigation into multidimensional scaling, a data analytic method for visualizing proximity data. We show that the optimal X is unique and is (1) uniform on the surface of the unit sphere, for dimensions n ≥ 3, (2) circularly symmetric with a scaled version of the radial density ρ/(1 - ρ2)1/2, 0 ≤ ρ ≤ 1, for n = 2, and (3) uniform on an interval centered at the origin, for n = 1 (Plackett's theorem). By proving spherical symmetry of the solution, a reduction to a radial problem is achieved. The solution is then found using the Wiener-Hopf technique for (real) $n < 3$ . The results are reminiscent of classical potential theory, but they cannot be reduced to it. Along the way, we obtain results of independent interest: for any i.i.d. random n-vectors X and Y, E|X - Y| ≤ E|X + Y|. Further, the kernel Kp,β(x, y) = |x + y|β p- |x - y|β p, x, y ∈ Rnand |x|p = (∑|xi|p)1/p, is positive-definite, that is, it is the covariance of a random field, Kp,β(x, y) = E[ Z(x)Z(y)] for some real-valued random process Z(x), for 1 ≤ p ≤ 2 and $0 < \beta \leq p \leq 2$ (but not for $\beta > p$ or $p > 2$ in general). Although this is an easy consequence of known results, it appears to be new in a strict sense. In the radial problem, the average distance D(r1, r2) between two spheres of radii r1and r2is used as a kernel. We derive properties of D(r1, r2), including nonnegative definiteness on signed measures of zero integral. 
540 |a Copyright 1994 Institute of Mathematical Statistics 
650 4 |a Multidimensional scaling 
650 4 |a maximal expected distance 
650 4 |a potential theory 
650 4 |a inequalities 
650 4 |a positive-definite functions 
650 4 |a Wiener-Hopf technique 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Mass  |x Point masses 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical functions  |x Mathematical transformations  |x Integral transformations  |x Laplace transformation 
650 4 |a Information science  |x Information management  |x Data management  |x Data visualization  |x Multidimensional scaling 
650 4 |a Mathematics  |x Pure mathematics  |x Calculus  |x Differential calculus  |x Differential equations 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical functions  |x Stress functions 
650 4 |a Mathematics  |x Applied mathematics  |x Analytics 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables 
650 4 |a Behavioral sciences  |x Leisure studies  |x Recreation  |x Sports  |x Equestrianism  |x Horse tack  |x Horseshoes 
650 4 |a Mathematics  |x Mathematical objects  |x Mathematical series  |x Series convergence  |x Absolute convergence 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions  |x Probability distributions  |x Mathematical moments  |x Multivariate Analysis 
655 4 |a research-article 
700 1 |a Logan, B. F.  |e verfasserin  |4 aut 
700 1 |a Reeds, J. A.  |e verfasserin  |4 aut 
700 1 |a Shepp, L. A.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Annals of Statistics  |d Institute of Mathematical Statistics  |g 22(1994), 1, Seite 406-438  |w (DE-627)270129162  |w (DE-600)1476670-X  |x 00905364  |7 nnns 
773 1 8 |g volume:22  |g year:1994  |g number:1  |g pages:406-438 
856 4 0 |u https://www.jstor.org/stable/2242461  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 22  |j 1994  |e 1  |h 406-438