The Vegetation of Pine Mountain, Kentucky: An Analysis of the Influence of Soils and Slope Exposure as Determined by Geological Structure

The distribution of forest communities on Pine Mountain, in the Cumberland Mountains of southeastern Kentucky, is in the main controlled by slope exposure and soil. These are determined by geological structure; the mountain is a monoclinal ridge of strongly dipping strata. The plant communities are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The American Midland Naturalist. - University of Notre Dame, 1909. - 16(1935), 4, Seite 517-565
1. Verfasser: Braun, E. Lucy (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1935
Zugriff auf das übergeordnete Werk:The American Midland Naturalist
Schlagworte:Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST006597548
003 DE-627
005 20240619152200.0
007 cr uuu---uuuuu
008 150323s1935 xx |||||o 00| ||eng c
024 7 |a 10.2307/2419852  |2 doi 
035 |a (DE-627)JST006597548 
035 |a (JST)2419852 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Braun, E. Lucy  |e verfasserin  |4 aut 
245 1 4 |a The Vegetation of Pine Mountain, Kentucky: An Analysis of the Influence of Soils and Slope Exposure as Determined by Geological Structure 
264 1 |c 1935 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The distribution of forest communities on Pine Mountain, in the Cumberland Mountains of southeastern Kentucky, is in the main controlled by slope exposure and soil. These are determined by geological structure; the mountain is a monoclinal ridge of strongly dipping strata. The plant communities are treated in sequence along the line of a profile crossing the mountain and along a stream. These are considered in four groups: communities of (A) the southeast or dip slope, (B) the summit, (C) ravines of the dip slope, and (D) the northwest slope. The communities are shown to differ greatly from one another within short distances. Details of forest composition and soil are included as a basis for the discussion. There is shown to be a striking dependence of communities on local factors which are in turn related to geological structure. The community range of forty-five tree species is shown in a table, and the significance of certain species emphasized. Sixteen forest types are considered which are treated as segregates of more complex communities, of which there are four. The mixed mesophytic forest association is considered the most important community of the deciduous forest--the regional climax today and the remnant of an undifferentiated climax from which other simpler climaxes have come. The permanent or relatively permanent character of all the forest communities is interpreted as evidence of the climax or subclimax nature of each. The relation of each to soils is considered. Immature soils support subclimax communities or physiographic climaxes. Mature soils support the regional or true climax communities. All pine, pine-oak, oak and oak-chestnut communities are considered to be subclimax; the mixed mesophytic forest communities (association-segregates) are the true climax communities. These show considerable range in composition and constituent species; sugar maple, basswood and buckeye are the most important indicator species. The admixture of hemlock in a mixed forest does not remove it from the category of a segregate of the mixed mesophytic association. The possible relic nature of one exceptional hemlock forest in which is an unusual group of herbaceous plants, is considered. The recognition of the status of each community is essential to an understanding of deciduous forest climaxes. 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Dendrology  |x Trees  |x Evergreen trees  |x Conifers  |x Pine trees 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Sloping terrain 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Forest soils 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Deciduous forests 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Coniferous forests 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Sand soils 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Mixed forests 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation  |x Vegetation structure  |x Plant strata  |x Vegetation canopies  |x Understory 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Mountain soils 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t The American Midland Naturalist  |d University of Notre Dame, 1909  |g 16(1935), 4, Seite 517-565  |w (DE-627)332164721  |w (DE-600)2052733-0  |x 19384238  |7 nnns 
773 1 8 |g volume:16  |g year:1935  |g number:4  |g pages:517-565 
856 4 0 |u https://www.jstor.org/stable/2419852  |3 Volltext 
856 4 0 |u https://doi.org/10.2307/2419852  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 16  |j 1935  |e 4  |h 517-565