Mycorrhizal Dynamics of Three Woodland Herbs of Contrasting Phenology along Topographic Gradients

Vesicular-arbuscular mycorrhizal (VAM) dynamics of three woodland herbs of differing phenology were examined along contiguous topographic gradients in two southwestern Ohio forests during 1992-1994. Cardamine concatenata (Brassicaceae) exhibited VAM colonization only during senescence in May, wherea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:American Journal of Botany. - Botanical Society of America, Inc.. - 82(1995), 11, Seite 1426-1431
1. Verfasser: DeMars, Brent G. (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:American Journal of Botany
Schlagworte:Biological sciences Physical sciences Environmental studies Health sciences
LEADER 01000caa a22002652 4500
001 JST003858545
003 DE-627
005 20240619121408.0
007 cr uuu---uuuuu
008 150322s1995 xx |||||o 00| ||eng c
035 |a (DE-627)JST003858545 
035 |a (JST)2445870 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a DeMars, Brent G.  |e verfasserin  |4 aut 
245 1 0 |a Mycorrhizal Dynamics of Three Woodland Herbs of Contrasting Phenology along Topographic Gradients 
264 1 |c 1995 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Vesicular-arbuscular mycorrhizal (VAM) dynamics of three woodland herbs of differing phenology were examined along contiguous topographic gradients in two southwestern Ohio forests during 1992-1994. Cardamine concatenata (Brassicaceae) exhibited VAM colonization only during senescence in May, whereas Trillium flexipes and Smilacina racemosa exhibited robust VAM development throughout the year. The lowest mean percent root length colonized (PRLC) for T. flexipes and S. racemosa was 38.3% and 37.7%, respectively, while the greatest was 80.2% and 80.8%, respectively. Overall, analysis of variance (ANOVA) indicated significant seasonal effects with summer months having higher mean PRLC, and winter and early spring months having the lowest. ANOVA also indicated a significant effect due to topography, with uplands and slopes having greater mean PRLC than lowlands. The significantly lower mean PRLC for both T. flexipes and S. racemosa may have reflected higher phosphate availability in the spring, cooler temperatures, and/or moister conditions. The significantly lower mean PRLC in lowland positions may be due to greater soil moisture throughout the year. These results support the hypothesis that VAM development is lower in moister topographic positions, however, they do not support the hypothesis that VAM development would increase with decreasing P availability. Consequently, moisture appeared more important than P in regulating VAM development in these sites. 
540 |a Copyright 1995 Botanical Society of America, Inc. 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Forest soils 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant morphology  |x Plant vegetation  |x Plant roots 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Climatology  |x Seasons 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural products  |x Plant products  |x Herbs 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Health sciences  |x Medical conditions  |x Infections 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Highlands 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Upland soils 
650 4 |a Biological sciences  |x Biology  |x Chronobiology  |x Phenology  |x Ecology 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t American Journal of Botany  |d Botanical Society of America, Inc.  |g 82(1995), 11, Seite 1426-1431  |w (DE-627)332339998  |w (DE-600)2053581-8  |x 15372197  |7 nnns 
773 1 8 |g volume:82  |g year:1995  |g number:11  |g pages:1426-1431 
856 4 0 |u https://www.jstor.org/stable/2445870  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_165 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 82  |j 1995  |e 11  |h 1426-1431