Reaching Goals by a Deadline: Digital Options and Continuous-Time Active Portfolio Management

We study a variety of optimal investment problems for objectives related to attaining goals by a fixed terminal time. We start by finding the policy that maximizes the probability of reaching a given wealth level by a given fixed terminal time, for the case where an investor can allocate his wealth...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Advances in Applied Probability. - Applied Probability Trust. - 31(1999), 2, Seite 551-577
1. Verfasser: Browne, Sid (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Advances in Applied Probability
Schlagworte:Optimal gambling Stochastic control Portfolio theory Martingales Option pricing Hedging strategies Digital options Economics Behavioral sciences Business Mathematics
LEADER 01000caa a22002652 4500
001 JST000681148
003 DE-627
005 20240619091216.0
007 cr uuu---uuuuu
008 150322s1999 xx |||||o 00| ||eng c
035 |a (DE-627)JST000681148 
035 |a (JST)1428122 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a 90A09  |2 MSC 
084 |a 60H10  |2 MSC 
084 |a 93E20  |2 MSC 
084 |a 60G40  |2 MSC 
084 |a 60J60  |2 MSC 
100 1 |a Browne, Sid  |e verfasserin  |4 aut 
245 1 0 |a Reaching Goals by a Deadline: Digital Options and Continuous-Time Active Portfolio Management 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We study a variety of optimal investment problems for objectives related to attaining goals by a fixed terminal time. We start by finding the policy that maximizes the probability of reaching a given wealth level by a given fixed terminal time, for the case where an investor can allocate his wealth at any time between n investment opportunities: n+1 risky stocks, as well as a risk-free asset that has a positive return. This generalizes results recently obtained by Kulldorff and Heath for the case of a single investment opportunity. We then use this to solve related problems for cases where the investor has an external source of income, and where the investor is interested solely in beating the return of a given stochastic benchmark, as is sometimes the case in institutional money management. One of the benchmarks we consider for this last problem is that of the return of the optimal growth policy, for which the resulting controlled process is a supermartingale. Nevertheless, we still find an optimal strategy. For the general case, we provide a thorough analysis of the optimal strategy, and obtain new insights into the behavior of the optimal policy. For one special case, namely that of a single stock with constant coefficients, the optimal policy is independent of the underlying drift. We explain this by exhibiting a correspondence between the probability maximizing results and the pricing and hedging of a particular derivative security, known as a digital or binary option. In fact, we show that for this case, the optimal policy to maximize the probability of reaching a given value of wealth by a predetermined time is equivalent to simply buying a European digital option with a particular strike price and payoff. A similar result holds for the general case, but with the stock replaced by a particular (index) portfolio, namely the optimal growth or log-optimal portfolio. 
540 |a Copyright 1999 Applied Probability Trust 
650 4 |a Optimal gambling 
650 4 |a Stochastic control 
650 4 |a Portfolio theory 
650 4 |a Martingales 
650 4 |a Option pricing 
650 4 |a Hedging strategies 
650 4 |a Digital options 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Finance  |x Financial investments  |x Investors 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Cognitive processes  |x Decision making  |x Optimal policy 
650 4 |a Business  |x Business economics  |x Commercial production  |x Production resources  |x Resource management  |x Time management  |x Deadlines 
650 4 |a Economics  |x Economic policy  |x Investment policy 
650 4 |a Economics  |x Economic disciplines  |x Socioeconomics  |x Wealth 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Finance  |x Financial management  |x Portfolio management 
650 4 |a Mathematics  |x Pure mathematics  |x Calculus  |x Differential calculus  |x Differential equations  |x Ordinary differential equations  |x Constant coefficients 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Finance  |x Financial instruments  |x Financial securities  |x Dilutive securities  |x Stock options 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Finance  |x Financial investments  |x Financial portfolios 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes  |x Martingales  |x General Applied Probability 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Advances in Applied Probability  |d Applied Probability Trust  |g 31(1999), 2, Seite 551-577  |w (DE-627)269247009  |w (DE-600)1474602-5  |x 00018678  |7 nnns 
773 1 8 |g volume:31  |g year:1999  |g number:2  |g pages:551-577 
856 4 0 |u https://www.jstor.org/stable/1428122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2938 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4392 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 31  |j 1999  |e 2  |h 551-577