Evolutionary morphology of coxal musculature in Pseudoscorpiones (Arachnida)

Pseudoscorpions are an ancient and globally distributed lineage of arachnids with more than 4000 species. Despite being present in virtually all terrestrial habitats, their morphology and anatomy has rarely been studied to date, which hampers homology statements both within and between other arachni...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Michalski, Hanna (VerfasserIn)
Weitere Verfasser: Harms, Danilo (BerichterstatterIn), Runge, Jens (BerichterstatterIn), Wirkner, Christian S. (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:MicroCT Locomotory apparatus Chelicerata
LEADER 01000caa a22002652 4500
001 ELV058331603
003 DE-627
005 20230626050651.0
007 cr uuu---uuuuu
008 220808s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2022.101165  |2 doi 
028 5 2 |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001830.pica 
035 |a (DE-627)ELV058331603 
035 |a (ELSEVIER)S1467-8039(22)00026-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Michalski, Hanna  |e verfasserin  |4 aut 
245 1 0 |a Evolutionary morphology of coxal musculature in Pseudoscorpiones (Arachnida) 
264 1 |c 2022transfer abstract 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a Pseudoscorpions are an ancient and globally distributed lineage of arachnids with more than 4000 species. Despite being present in virtually all terrestrial habitats, their morphology and anatomy has rarely been studied to date, which hampers homology statements both within and between other arachnid orders. All pseudoscorpions share a morphological peculiarity, the fixation of the coxae of all the walking legs. The same morphological condition is seen in certain other arachnid taxa, such as Solifugae or Scorpiones – potential sistergroups of Pseudoscorpiones. To investigate the musculature apparatus of this unusual feature, we reconstructed the musculature in the coxae of walking legs in three species of pseudoscorpions that represent the three major clades within this order. Using micro-computed tomography (μCT), we show that pseudoscorpions have the highest number of coxal muscles amongst the arachnid orders (12 vs. fewer than 10 in others), and that the muscular composition of the first two legs differs from that in the hind legs, correlating with the difference in function, i.e. pulling in the front legs and pushing in the hind legs. Pseudoscorpions are also unique amongst the arachnids in lacking endoskeletal structures (coxal apodeme or costa coxalis) inside the coxae. We observed that within pseudoscorpions, there is a trend towards a reduction of the number of coxal muscles, with the most basal-branching taxon having the highest number and more derived taxa exhibiting lower counts. We hypothesize the muscular ground pattern for Pseudoscorpiones and discuss the evolution of this system by comparing it to the (scanty) data on other arachnids available in the literature. 
520 |a Pseudoscorpions are an ancient and globally distributed lineage of arachnids with more than 4000 species. Despite being present in virtually all terrestrial habitats, their morphology and anatomy has rarely been studied to date, which hampers homology statements both within and between other arachnid orders. All pseudoscorpions share a morphological peculiarity, the fixation of the coxae of all the walking legs. The same morphological condition is seen in certain other arachnid taxa, such as Solifugae or Scorpiones – potential sistergroups of Pseudoscorpiones. To investigate the musculature apparatus of this unusual feature, we reconstructed the musculature in the coxae of walking legs in three species of pseudoscorpions that represent the three major clades within this order. Using micro-computed tomography (μCT), we show that pseudoscorpions have the highest number of coxal muscles amongst the arachnid orders (12 vs. fewer than 10 in others), and that the muscular composition of the first two legs differs from that in the hind legs, correlating with the difference in function, i.e. pulling in the front legs and pushing in the hind legs. Pseudoscorpions are also unique amongst the arachnids in lacking endoskeletal structures (coxal apodeme or costa coxalis) inside the coxae. We observed that within pseudoscorpions, there is a trend towards a reduction of the number of coxal muscles, with the most basal-branching taxon having the highest number and more derived taxa exhibiting lower counts. We hypothesize the muscular ground pattern for Pseudoscorpiones and discuss the evolution of this system by comparing it to the (scanty) data on other arachnids available in the literature. 
650 7 |a MicroCT  |2 Elsevier 
650 7 |a Locomotory apparatus  |2 Elsevier 
650 7 |a Chelicerata  |2 Elsevier 
700 1 |a Harms, Danilo  |4 oth 
700 1 |a Runge, Jens  |4 oth 
700 1 |a Wirkner, Christian S.  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:69  |g year:2022  |g pages:0 
856 4 0 |u https://doi.org/10.1016/j.asd.2022.101165  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 69  |j 2022  |h 0