The sperm ultrastructure of members of basal Tenebrionoidea (Coleoptera)

The sperm ultrastructure of some beetles of Tenebrionoidea was studied with particular attention to those of the Ripiphoridae, Mordellidae, and Meloidae. These three groups are often thought to form a clade, which is the sister group of the remaining Tenebrionoidea. The testes of the two former fami...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Dias, Glenda (VerfasserIn)
Weitere Verfasser: Lino-Neto, José (BerichterstatterIn), Mercati, David (BerichterstatterIn), Fanciulli, Pietro Paolo (BerichterstatterIn), Lupetti, Pietro (BerichterstatterIn), Dallai, Romano (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Insect sperm ultrastructure Insect spermiogenesis Tenebrionoidea sperm structure
Beschreibung
Zusammenfassung:The sperm ultrastructure of some beetles of Tenebrionoidea was studied with particular attention to those of the Ripiphoridae, Mordellidae, and Meloidae. These three groups are often thought to form a clade, which is the sister group of the remaining Tenebrionoidea. The testes of the two former families have thinner but longer spermatic cysts containing fewer and longer sperm. Within each cyst all sperm cells have the same orientation, but cross sections showed that the orientation of the axonemes alternate between adjacent cysts, possibly due to the cysts bending on themselves. In both families the sperm has a bilayered acrosome and the flagellum, which shows mitochondrial derivatives starting laterally to the nuclear base, has a typical 9 + 9+2 axoneme with accessory tubules provided with 16 protofilaments in their wall, and well-structured triangular shaped accessory bodies. In Mordellistena sp (Mordellidae) sperm, both mitochondrial derivatives and accessory bodies are somewhat asymmetrical. Moreover, the flagellum shows a very thin and long tail end provided with only accessory tubules. Meloidae species have testes with thicker sperm cysts containing numerous shorter sperm. Within the individual cysts the sperm flagella exhibit an alternating orientation of their axonemes as consequence of a peculiar spermatogenetic process. The flagellar structure is similar to that of the above-mentioned species, but the accessory bodies are not well defined and constituted by fuzzy material. In Mylabris hieracii (Meloidae) sperm, the acrosome is flat with a conspicuous perforatorium and its nucleus has a peculiar quadrangular section. Berberomeloe majalis sperm has a large acrosome with an unusual pentagonal perforatorium. The centriolar structure of Mylabris variabilis shows a complex of dense radial links connecting the microtubular structures to the plasma membrane. These results suggest that Ripiphoridae have a closer relationship with Mordellidae than with Meloidae. These findings are in agreement with results obtained with molecular data.
The sperm ultrastructure of some beetles of Tenebrionoidea was studied with particular attention to those of the Ripiphoridae, Mordellidae, and Meloidae. These three groups are often thought to form a clade, which is the sister group of the remaining Tenebrionoidea. The testes of the two former families have thinner but longer spermatic cysts containing fewer and longer sperm. Within each cyst all sperm cells have the same orientation, but cross sections showed that the orientation of the axonemes alternate between adjacent cysts, possibly due to the cysts bending on themselves. In both families the sperm has a bilayered acrosome and the flagellum, which shows mitochondrial derivatives starting laterally to the nuclear base, has a typical 9 + 9+2 axoneme with accessory tubules provided with 16 protofilaments in their wall, and well-structured triangular shaped accessory bodies. In Mordellistena sp (Mordellidae) sperm, both mitochondrial derivatives and accessory bodies are somewhat asymmetrical. Moreover, the flagellum shows a very thin and long tail end provided with only accessory tubules. Meloidae species have testes with thicker sperm cysts containing numerous shorter sperm. Within the individual cysts the sperm flagella exhibit an alternating orientation of their axonemes as consequence of a peculiar spermatogenetic process. The flagellar structure is similar to that of the above-mentioned species, but the accessory bodies are not well defined and constituted by fuzzy material. In Mylabris hieracii (Meloidae) sperm, the acrosome is flat with a conspicuous perforatorium and its nucleus has a peculiar quadrangular section. Berberomeloe majalis sperm has a large acrosome with an unusual pentagonal perforatorium. The centriolar structure of Mylabris variabilis shows a complex of dense radial links connecting the microtubular structures to the plasma membrane. These results suggest that Ripiphoridae have a closer relationship with Mordellidae than with Meloidae. These findings are in agreement with results obtained with molecular data.
DOI:10.1016/j.asd.2021.101129