|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
ELV054112486 |
003 |
DE-627 |
005 |
20230626035710.0 |
007 |
cr uuu---uuuuu |
008 |
210910s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.asd.2021.101044
|2 doi
|
028 |
5 |
2 |
|a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica
|
035 |
|
|
|a (DE-627)ELV054112486
|
035 |
|
|
|a (ELSEVIER)S1467-8039(21)00018-9
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
082 |
0 |
4 |
|a 610
|q VZ
|
082 |
0 |
4 |
|a 670
|q VZ
|
084 |
|
|
|a 51.75
|2 bkl
|
100 |
1 |
|
|a Donato, Sandro
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synchrotron X-ray phase contrast micro tomography to explore the morphology of abdominal organs in Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae)
|
264 |
|
1 |
|c 2021transfer abstract
|
336 |
|
|
|a nicht spezifiziert
|b zzz
|2 rdacontent
|
337 |
|
|
|a nicht spezifiziert
|b z
|2 rdamedia
|
338 |
|
|
|a nicht spezifiziert
|b zu
|2 rdacarrier
|
520 |
|
|
|a Micro-computer tomography imaging is a fast and non-destructive data acquisition technique which can replace or complement the traditional investigation methodologies used in entomology to study morphology. In this paper, Synchrotron Radiation X-ray Phase-Contrast micro tomography (SR-PhC micro-CT) was combined with histology and scanning electron microscopy (SEM) observations to describe the abdominal organs of Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). This species was used as a representative model because of its ecological role as a generalist predator in agroecosystems. SR-PhC micro-CT allowed us to identify in situ abdominal structures including dorsal vessel, digestive tract with Malpighian tubules, male reproductive system, ganglia, fat bodies, pygidial glands, muscles and tracheae. The histology was performed to define the tissue organization of the digestive and reproductive systems. SR-PhC micro-CT and 3D rendering provided more accurate information on shape and size of organs than histological and SEM analyses, respectively. The finding of this study was to describe the anatomy and histology of organs involved in crucial life history traits, such as reproduction, nutrition and excretion. High quality images and the supplementary video represent a significant advance in knowledge of the carabid anatomy and are a baseline for future research.
|
520 |
|
|
|a Micro-computer tomography imaging is a fast and non-destructive data acquisition technique which can replace or complement the traditional investigation methodologies used in entomology to study morphology. In this paper, Synchrotron Radiation X-ray Phase-Contrast micro tomography (SR-PhC micro-CT) was combined with histology and scanning electron microscopy (SEM) observations to describe the abdominal organs of Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). This species was used as a representative model because of its ecological role as a generalist predator in agroecosystems. SR-PhC micro-CT allowed us to identify in situ abdominal structures including dorsal vessel, digestive tract with Malpighian tubules, male reproductive system, ganglia, fat bodies, pygidial glands, muscles and tracheae. The histology was performed to define the tissue organization of the digestive and reproductive systems. SR-PhC micro-CT and 3D rendering provided more accurate information on shape and size of organs than histological and SEM analyses, respectively. The finding of this study was to describe the anatomy and histology of organs involved in crucial life history traits, such as reproduction, nutrition and excretion. High quality images and the supplementary video represent a significant advance in knowledge of the carabid anatomy and are a baseline for future research.
|
650 |
|
7 |
|a Pygidial glands
|2 Elsevier
|
650 |
|
7 |
|a Carabid beetle
|2 Elsevier
|
650 |
|
7 |
|a Micro-computed tomography
|2 Elsevier
|
650 |
|
7 |
|a Digestive system
|2 Elsevier
|
650 |
|
7 |
|a Morphology
|2 Elsevier
|
650 |
|
7 |
|a Reproductive system
|2 Elsevier
|
700 |
1 |
|
|a Vommaro, Maria Luigia
|4 oth
|
700 |
1 |
|
|a Tromba, Giuliana
|4 oth
|
700 |
1 |
|
|a Giglio, Anita
|4 oth
|
773 |
0 |
8 |
|i Enthalten in
|n Elsevier Science
|t Ventricular Restraint Improves Outcomes in HF Patients with CRT
|d 2011
|g Amsterdam [u.a.]
|w (DE-627)ELV015921530
|
773 |
1 |
8 |
|g volume:62
|g year:2021
|g pages:0
|
856 |
4 |
0 |
|u https://doi.org/10.1016/j.asd.2021.101044
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_U
|
912 |
|
|
|a GBV_ELV
|
912 |
|
|
|a SYSFLAG_U
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_26
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_49
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_72
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_131
|
912 |
|
|
|a GBV_ILN_179
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_694
|
912 |
|
|
|a GBV_ILN_697
|
912 |
|
|
|a GBV_ILN_807
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2019
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2124
|
912 |
|
|
|a GBV_ILN_2156
|
912 |
|
|
|a GBV_ILN_2208
|
912 |
|
|
|a GBV_ILN_2469
|
912 |
|
|
|a GBV_ILN_2470
|
912 |
|
|
|a GBV_ILN_2505
|
936 |
b |
k |
|a 51.75
|j Verbundwerkstoffe
|j Schichtstoffe
|q VZ
|
951 |
|
|
|a AR
|
952 |
|
|
|d 62
|j 2021
|h 0
|