Synchrotron X-ray phase contrast micro tomography to explore the morphology of abdominal organs in Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae)

Micro-computer tomography imaging is a fast and non-destructive data acquisition technique which can replace or complement the traditional investigation methodologies used in entomology to study morphology. In this paper, Synchrotron Radiation X-ray Phase-Contrast micro tomography (SR-PhC micro-CT)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Donato, Sandro (VerfasserIn)
Weitere Verfasser: Vommaro, Maria Luigia (BerichterstatterIn), Tromba, Giuliana (BerichterstatterIn), Giglio, Anita (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Pygidial glands Carabid beetle Micro-computed tomography Digestive system Morphology Reproductive system
LEADER 01000caa a22002652 4500
001 ELV054112486
003 DE-627
005 20230626035710.0
007 cr uuu---uuuuu
008 210910s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2021.101044  |2 doi 
028 5 2 |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica 
035 |a (DE-627)ELV054112486 
035 |a (ELSEVIER)S1467-8039(21)00018-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Donato, Sandro  |e verfasserin  |4 aut 
245 1 0 |a Synchrotron X-ray phase contrast micro tomography to explore the morphology of abdominal organs in Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae) 
264 1 |c 2021transfer abstract 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a Micro-computer tomography imaging is a fast and non-destructive data acquisition technique which can replace or complement the traditional investigation methodologies used in entomology to study morphology. In this paper, Synchrotron Radiation X-ray Phase-Contrast micro tomography (SR-PhC micro-CT) was combined with histology and scanning electron microscopy (SEM) observations to describe the abdominal organs of Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). This species was used as a representative model because of its ecological role as a generalist predator in agroecosystems. SR-PhC micro-CT allowed us to identify in situ abdominal structures including dorsal vessel, digestive tract with Malpighian tubules, male reproductive system, ganglia, fat bodies, pygidial glands, muscles and tracheae. The histology was performed to define the tissue organization of the digestive and reproductive systems. SR-PhC micro-CT and 3D rendering provided more accurate information on shape and size of organs than histological and SEM analyses, respectively. The finding of this study was to describe the anatomy and histology of organs involved in crucial life history traits, such as reproduction, nutrition and excretion. High quality images and the supplementary video represent a significant advance in knowledge of the carabid anatomy and are a baseline for future research. 
520 |a Micro-computer tomography imaging is a fast and non-destructive data acquisition technique which can replace or complement the traditional investigation methodologies used in entomology to study morphology. In this paper, Synchrotron Radiation X-ray Phase-Contrast micro tomography (SR-PhC micro-CT) was combined with histology and scanning electron microscopy (SEM) observations to describe the abdominal organs of Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). This species was used as a representative model because of its ecological role as a generalist predator in agroecosystems. SR-PhC micro-CT allowed us to identify in situ abdominal structures including dorsal vessel, digestive tract with Malpighian tubules, male reproductive system, ganglia, fat bodies, pygidial glands, muscles and tracheae. The histology was performed to define the tissue organization of the digestive and reproductive systems. SR-PhC micro-CT and 3D rendering provided more accurate information on shape and size of organs than histological and SEM analyses, respectively. The finding of this study was to describe the anatomy and histology of organs involved in crucial life history traits, such as reproduction, nutrition and excretion. High quality images and the supplementary video represent a significant advance in knowledge of the carabid anatomy and are a baseline for future research. 
650 7 |a Pygidial glands  |2 Elsevier 
650 7 |a Carabid beetle  |2 Elsevier 
650 7 |a Micro-computed tomography  |2 Elsevier 
650 7 |a Digestive system  |2 Elsevier 
650 7 |a Morphology  |2 Elsevier 
650 7 |a Reproductive system  |2 Elsevier 
700 1 |a Vommaro, Maria Luigia  |4 oth 
700 1 |a Tromba, Giuliana  |4 oth 
700 1 |a Giglio, Anita  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:62  |g year:2021  |g pages:0 
856 4 0 |u https://doi.org/10.1016/j.asd.2021.101044  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 62  |j 2021  |h 0