Protaspis larva of an aglaspidid-like arthropod from the Ordovician of Siberia and its habitat

A fossil larva lacking segmentation of the calcified carapace, closely resembling the trilobite protaspis, has been found associated with other skeletal elements of an angarocaridid Girardevia species in the mid Darriwilian of central Siberia. The presence of protaspis larvae in the angarocaridids,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Dzik, Jerzy (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Angarocaris Aglaspidida Darriwilian Chelicerates Evolution
LEADER 01000caa a22002652 4500
001 ELV053549341
003 DE-627
005 20230626035015.0
007 cr uuu---uuuuu
008 210910s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2020.101026  |2 doi 
028 5 2 |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001343.pica 
035 |a (DE-627)ELV053549341 
035 |a (ELSEVIER)S1467-8039(20)30149-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Dzik, Jerzy  |e verfasserin  |4 aut 
245 1 0 |a Protaspis larva of an aglaspidid-like arthropod from the Ordovician of Siberia and its habitat 
264 1 |c 2021transfer abstract 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a A fossil larva lacking segmentation of the calcified carapace, closely resembling the trilobite protaspis, has been found associated with other skeletal elements of an angarocaridid Girardevia species in the mid Darriwilian of central Siberia. The presence of protaspis larvae in the angarocaridids, generally believed to represent a branch of the Aglaspidida, supports their proximity to trilobites and proves a low position on the arthropod phylogenetic tree but does not necessarily contradict the chelicerate affinity. The cephalic appendages of angarocaridids bore massive gnathobases with detachable spines, closely similar to those known in extant xiphosurans and in their probable Cambrian relatives. The stratigraphic succession of the angarocaridids, their phosphatized cuticle pieces being abundant in the Ordovician strata of Siberia, shows a gradual improvement of mechanical resistance of their carapaces, eventually resulting in a honeycomb structure. The associated benthic mollusc assemblage is dominated with the bellerophontids showing high mortality at metamorphosis and only the limpet-like Pterotheca, infaunal bivalves, and scaphopods being able to survive this in a substantial number. This suggests a strong selective pressure from predators equipped with well-skeletonised oral apparatuses able to crush mineralized body covers of their prey. Possibly, these were some of the associated conodonts of appropriate size and co-evolving towards their ability to crush more and more resistant cuticle. Less likely candidates for durophagy are endoceratid or orthoceratid cephalopods. Also the angarocaridids themselves, equipped with robust gnathobases of cephalic appendages, apparently predated on benthic shelly animals. 
520 |a A fossil larva lacking segmentation of the calcified carapace, closely resembling the trilobite protaspis, has been found associated with other skeletal elements of an angarocaridid Girardevia species in the mid Darriwilian of central Siberia. The presence of protaspis larvae in the angarocaridids, generally believed to represent a branch of the Aglaspidida, supports their proximity to trilobites and proves a low position on the arthropod phylogenetic tree but does not necessarily contradict the chelicerate affinity. The cephalic appendages of angarocaridids bore massive gnathobases with detachable spines, closely similar to those known in extant xiphosurans and in their probable Cambrian relatives. The stratigraphic succession of the angarocaridids, their phosphatized cuticle pieces being abundant in the Ordovician strata of Siberia, shows a gradual improvement of mechanical resistance of their carapaces, eventually resulting in a honeycomb structure. The associated benthic mollusc assemblage is dominated with the bellerophontids showing high mortality at metamorphosis and only the limpet-like Pterotheca, infaunal bivalves, and scaphopods being able to survive this in a substantial number. This suggests a strong selective pressure from predators equipped with well-skeletonised oral apparatuses able to crush mineralized body covers of their prey. Possibly, these were some of the associated conodonts of appropriate size and co-evolving towards their ability to crush more and more resistant cuticle. Less likely candidates for durophagy are endoceratid or orthoceratid cephalopods. Also the angarocaridids themselves, equipped with robust gnathobases of cephalic appendages, apparently predated on benthic shelly animals. 
650 7 |a Angarocaris  |2 Elsevier 
650 7 |a Aglaspidida  |2 Elsevier 
650 7 |a Darriwilian  |2 Elsevier 
650 7 |a Chelicerates  |2 Elsevier 
650 7 |a Evolution  |2 Elsevier 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:61  |g year:2021  |g pages:0 
856 4 0 |u https://doi.org/10.1016/j.asd.2020.101026  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 61  |j 2021  |h 0