Coevolution between female seminal receptacle and sperm morphology in the semiaquatic measurer bug Hydrometra stagnorum L. (Heteroptera, Hydrometridae)

The coevolution between sperm length and size of the female sperm-storage organs is described for the first time within Heteroptera. The long sperm of the measurer bug Hydrometra stagnorum is characterized by the unusually long acrosome with its anterior region helically arranged, and by a very shor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Dallai, Romano (VerfasserIn)
Weitere Verfasser: Fanciulli, Pietro Paolo (BerichterstatterIn), Mercati, David (BerichterstatterIn), Lupetti, Pietro (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Semiaquatic bug Insect sperm morphology Coevolution Electron microscopy
Beschreibung
Zusammenfassung:The coevolution between sperm length and size of the female sperm-storage organs is described for the first time within Heteroptera. The long sperm of the measurer bug Hydrometra stagnorum is characterized by the unusually long acrosome with its anterior region helically arranged, and by a very short nucleus. The sperm flagellum has a 9 + 9+2 conventional axoneme and crystallized mitochondrial derivatives. The female spermatheca consists of an extraordinarily long spermathecal duct ending with an apical spermathecal bulb into which flows also the secretions of a relatively short spermathecal gland. Both spermathecal duct and gland have a thin epithelium lined by a cuticle, beneath which a complex of secretory and duct forming cells are present. The secretions of these two structures flow into the apical spermathecal bulb. A thick layer of muscle fibers surrounds the epithelium. These results confirm the opinion that the dimensions of the female reproductive sperm-storage organs are able to drive the sperm morphology.
The coevolution between sperm length and size of the female sperm-storage organs is described for the first time within Heteroptera. The long sperm of the measurer bug Hydrometra stagnorum is characterized by the unusually long acrosome with its anterior region helically arranged, and by a very short nucleus. The sperm flagellum has a 9 + 9+2 conventional axoneme and crystallized mitochondrial derivatives. The female spermatheca consists of an extraordinarily long spermathecal duct ending with an apical spermathecal bulb into which flows also the secretions of a relatively short spermathecal gland. Both spermathecal duct and gland have a thin epithelium lined by a cuticle, beneath which a complex of secretory and duct forming cells are present. The secretions of these two structures flow into the apical spermathecal bulb. A thick layer of muscle fibers surrounds the epithelium. These results confirm the opinion that the dimensions of the female reproductive sperm-storage organs are able to drive the sperm morphology.
DOI:10.1016/j.asd.2020.101001