|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
ELV052326322 |
003 |
DE-627 |
005 |
20230626033119.0 |
007 |
cr uuu---uuuuu |
008 |
210910s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.asd.2020.100978
|2 doi
|
028 |
5 |
2 |
|a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001225.pica
|
035 |
|
|
|a (DE-627)ELV052326322
|
035 |
|
|
|a (ELSEVIER)S1467-8039(20)30101-8
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
082 |
0 |
4 |
|a 610
|q VZ
|
082 |
0 |
4 |
|a 670
|q VZ
|
084 |
|
|
|a 51.75
|2 bkl
|
100 |
1 |
|
|a Dias, Glenda
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The sperm ultrastructure of the click beetles (Elateridae) and related groups (Buprestidae and Lampyridae)
|
264 |
|
1 |
|c 2020transfer abstract
|
336 |
|
|
|a nicht spezifiziert
|b zzz
|2 rdacontent
|
337 |
|
|
|a nicht spezifiziert
|b z
|2 rdamedia
|
338 |
|
|
|a nicht spezifiziert
|b zu
|2 rdacarrier
|
520 |
|
|
|a In the present study, we describe the sperm morphology of 11 species of Elateriformia (9 elaterids, 1 lampyrid and 1 buprestid) using transmission electron microscopy. All species exhibited sperm that is not usually observed in insects in general. The most highlighted features are the displacement of the nucleus running parallel to the flagellar components, hitherto observed only in coccinellid and carabid beetles, and the presence of thin and dense structures along the nucleus, probably derived from the centriole adjunct, a feature that is so far exclusive to these insects. The other structures are a typical axoneme for insects with 9 + 9 + 2 microtubules, in a position diametrically opposite relative to the nucleus, two slender, symmetrical mitochondrial derivatives and a pair of discrete accessory bodies. This arrangement provides a bilaterally symmetrical flagellum, which favourably influences sperm hydrodynamics, as will be discussed. The occurrence of this unusual structural arrangement in the sperm of species from superfamilies that are phylogenetically as distant as Elateroidea and Buprestoidea support the monophyly of the infraorder Elateriformia, as proposed by some previous molecular studies.
|
520 |
|
|
|a In the present study, we describe the sperm morphology of 11 species of Elateriformia (9 elaterids, 1 lampyrid and 1 buprestid) using transmission electron microscopy. All species exhibited sperm that is not usually observed in insects in general. The most highlighted features are the displacement of the nucleus running parallel to the flagellar components, hitherto observed only in coccinellid and carabid beetles, and the presence of thin and dense structures along the nucleus, probably derived from the centriole adjunct, a feature that is so far exclusive to these insects. The other structures are a typical axoneme for insects with 9 + 9 + 2 microtubules, in a position diametrically opposite relative to the nucleus, two slender, symmetrical mitochondrial derivatives and a pair of discrete accessory bodies. This arrangement provides a bilaterally symmetrical flagellum, which favourably influences sperm hydrodynamics, as will be discussed. The occurrence of this unusual structural arrangement in the sperm of species from superfamilies that are phylogenetically as distant as Elateroidea and Buprestoidea support the monophyly of the infraorder Elateriformia, as proposed by some previous molecular studies.
|
650 |
|
7 |
|a Coleoptera
|2 Elsevier
|
650 |
|
7 |
|a Insect sperm ultrastructure
|2 Elsevier
|
650 |
|
7 |
|a Electron microscopy
|2 Elsevier
|
700 |
1 |
|
|a Lino-Neto, José
|4 oth
|
700 |
1 |
|
|a Dallai, Romano
|4 oth
|
700 |
1 |
|
|a Mercati, David
|4 oth
|
700 |
1 |
|
|a Lupetti, Pietro
|4 oth
|
773 |
0 |
8 |
|i Enthalten in
|n Elsevier Science
|t Ventricular Restraint Improves Outcomes in HF Patients with CRT
|d 2011
|g Amsterdam [u.a.]
|w (DE-627)ELV015921530
|
773 |
1 |
8 |
|g volume:59
|g year:2020
|g pages:0
|
856 |
4 |
0 |
|u https://doi.org/10.1016/j.asd.2020.100978
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_U
|
912 |
|
|
|a GBV_ELV
|
912 |
|
|
|a SYSFLAG_U
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_26
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_49
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_72
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_131
|
912 |
|
|
|a GBV_ILN_179
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_694
|
912 |
|
|
|a GBV_ILN_697
|
912 |
|
|
|a GBV_ILN_807
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2019
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2124
|
912 |
|
|
|a GBV_ILN_2156
|
912 |
|
|
|a GBV_ILN_2208
|
912 |
|
|
|a GBV_ILN_2469
|
912 |
|
|
|a GBV_ILN_2470
|
912 |
|
|
|a GBV_ILN_2505
|
936 |
b |
k |
|a 51.75
|j Verbundwerkstoffe
|j Schichtstoffe
|q VZ
|
951 |
|
|
|a AR
|
952 |
|
|
|d 59
|j 2020
|h 0
|