Visual metamorphoses in insects and malacostracans: Transitions between an aquatic and terrestrial life

Arthropods operate in an outrageous diversity of environments. From the deep sea to dense tropical forests, to wide open arctic tundra, they have colonized almost every possible habitat. Within these environments, the presence of light is nearly ubiquitous, varying in intensity, wavelength, and pola...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Chou, Alice (VerfasserIn)
Weitere Verfasser: Lin, Chan (BerichterstatterIn), Cronin, Thomas W. (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Spectral tuning Compound eye Corneal nipple Polarization vision Amphibiotic Optic lobe
LEADER 01000caa a22002652 4500
001 ELV052326314
003 DE-627
005 20230626033119.0
007 cr uuu---uuuuu
008 210910s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2020.100974  |2 doi 
028 5 2 |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001225.pica 
035 |a (DE-627)ELV052326314 
035 |a (ELSEVIER)S1467-8039(20)30097-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Chou, Alice  |e verfasserin  |4 aut 
245 1 0 |a Visual metamorphoses in insects and malacostracans: Transitions between an aquatic and terrestrial life 
264 1 |c 2020transfer abstract 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a Arthropods operate in an outrageous diversity of environments. From the deep sea to dense tropical forests, to wide open arctic tundra, they have colonized almost every possible habitat. Within these environments, the presence of light is nearly ubiquitous, varying in intensity, wavelength, and polarization. Light provides critical information about the environment, such as time of day or where food sources may be located. Animals take advantage of this prevalent and informative cue to make behavioral choices. However, the types of choices animals face depend greatly on their environments and needs at any given time. In particular, animals that undergo metamorphosis, with arthropods being the prime example, experience dramatic changes in both behavior and ecology, which in turn may require altering the structure and function of sensory systems such as vision. Amphibiotic organisms maintain aquatic lifestyles as juveniles before transitioning to terrestrial lifestyles as adults. However, light behaves differently in water than in air, resulting in distinct aquatic and terrestrial optical environments. Visual changes in response to these optical differences can occur on multiple levels, from corneal structure down to neural organization. In this review, we summarize examples of alterations in the visual systems of amphibiotic larval and adult insects and malacostracan crustaceans, specifically those attributed to environmental differences between metamorphic phases. 
520 |a Arthropods operate in an outrageous diversity of environments. From the deep sea to dense tropical forests, to wide open arctic tundra, they have colonized almost every possible habitat. Within these environments, the presence of light is nearly ubiquitous, varying in intensity, wavelength, and polarization. Light provides critical information about the environment, such as time of day or where food sources may be located. Animals take advantage of this prevalent and informative cue to make behavioral choices. However, the types of choices animals face depend greatly on their environments and needs at any given time. In particular, animals that undergo metamorphosis, with arthropods being the prime example, experience dramatic changes in both behavior and ecology, which in turn may require altering the structure and function of sensory systems such as vision. Amphibiotic organisms maintain aquatic lifestyles as juveniles before transitioning to terrestrial lifestyles as adults. However, light behaves differently in water than in air, resulting in distinct aquatic and terrestrial optical environments. Visual changes in response to these optical differences can occur on multiple levels, from corneal structure down to neural organization. In this review, we summarize examples of alterations in the visual systems of amphibiotic larval and adult insects and malacostracan crustaceans, specifically those attributed to environmental differences between metamorphic phases. 
650 7 |a Spectral tuning  |2 Elsevier 
650 7 |a Compound eye  |2 Elsevier 
650 7 |a Corneal nipple  |2 Elsevier 
650 7 |a Polarization vision  |2 Elsevier 
650 7 |a Amphibiotic  |2 Elsevier 
650 7 |a Optic lobe  |2 Elsevier 
700 1 |a Lin, Chan  |4 oth 
700 1 |a Cronin, Thomas W.  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:59  |g year:2020  |g pages:0 
856 4 0 |u https://doi.org/10.1016/j.asd.2020.100974  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 59  |j 2020  |h 0