On the morphology and possible function of two putative vibroacoustic mechanisms in derbid planthoppers (Hemiptera: Fulgoromorpha: Derbidae)

A mechanism involving interaction of the metathoracic wing and third abdominal segment of derbid planthoppers was first discovered over a century ago, and interpreted as a stridulatory organ for sound production. Although referred to occasionally in later taxonomic works, the detailed morphology, sy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Davranoglou, Leonidas-Romanos (VerfasserIn)
Weitere Verfasser: Mortimer, Beth (BerichterstatterIn), Taylor, Graham K. (BerichterstatterIn), Malenovský, Igor (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Fulgoroidea Stridulation Tymbal Snapping organ Auchenorrhyncha Tergal glands
LEADER 01000caa a22002652 4500
001 ELV048285129
003 DE-627
005 20230626021606.0
007 cr uuu---uuuuu
008 200108s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2019.100880  |2 doi 
028 5 2 |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000789.pica 
035 |a (DE-627)ELV048285129 
035 |a (ELSEVIER)S1467-8039(19)30022-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Davranoglou, Leonidas-Romanos  |e verfasserin  |4 aut 
245 1 0 |a On the morphology and possible function of two putative vibroacoustic mechanisms in derbid planthoppers (Hemiptera: Fulgoromorpha: Derbidae) 
264 1 |c 2019transfer abstract 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a A mechanism involving interaction of the metathoracic wing and third abdominal segment of derbid planthoppers was first discovered over a century ago, and interpreted as a stridulatory organ for sound production. Although referred to occasionally in later taxonomic works, the detailed morphology, systematic distribution, and behavioural significance of this structure have remained unknown, and its proposed use in sound production has never been corroborated. Here we examine the distribution and morphology of the supposed stridulatory organ of Derbidae and the recently-described vibratory mechanism of planthoppers – the snapping organ, across 168 species covering the entire taxonomic spectrum of the family. We find that many derbids possess snapping organs morphologically similar to those of other planthoppers, and find no evidence for the presence of tymbal organs, which were previously thought to generate vibrational signals in derbids. We find the supposed stridulatory mechanism to be widespread in Derbidae, and conclude that it provides several systematically and taxonomically important characters. Nevertheless, its morphology appears unsuitable for the production of sound, and we instead speculate that the mechanism plays a role in spreading chemical secretions or wax. Finally, we observe wax production by tergal glands in derbid larvae, and illustrate their external morphology in adults. 
520 |a A mechanism involving interaction of the metathoracic wing and third abdominal segment of derbid planthoppers was first discovered over a century ago, and interpreted as a stridulatory organ for sound production. Although referred to occasionally in later taxonomic works, the detailed morphology, systematic distribution, and behavioural significance of this structure have remained unknown, and its proposed use in sound production has never been corroborated. Here we examine the distribution and morphology of the supposed stridulatory organ of Derbidae and the recently-described vibratory mechanism of planthoppers – the snapping organ, across 168 species covering the entire taxonomic spectrum of the family. We find that many derbids possess snapping organs morphologically similar to those of other planthoppers, and find no evidence for the presence of tymbal organs, which were previously thought to generate vibrational signals in derbids. We find the supposed stridulatory mechanism to be widespread in Derbidae, and conclude that it provides several systematically and taxonomically important characters. Nevertheless, its morphology appears unsuitable for the production of sound, and we instead speculate that the mechanism plays a role in spreading chemical secretions or wax. Finally, we observe wax production by tergal glands in derbid larvae, and illustrate their external morphology in adults. 
650 7 |a Fulgoroidea  |2 Elsevier 
650 7 |a Stridulation  |2 Elsevier 
650 7 |a Tymbal  |2 Elsevier 
650 7 |a Snapping organ  |2 Elsevier 
650 7 |a Auchenorrhyncha  |2 Elsevier 
650 7 |a Tergal glands  |2 Elsevier 
700 1 |a Mortimer, Beth  |4 oth 
700 1 |a Taylor, Graham K.  |4 oth 
700 1 |a Malenovský, Igor  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:52  |g year:2019  |g pages:0 
856 4 0 |u https://doi.org/10.1016/j.asd.2019.100880  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 52  |j 2019  |h 0