A micro-CT approach for determination of insect respiratory volume

Variation in the morphology of the insect tracheal system can strongly affect respiratory physiology, with implications for everything from pest control to evolution of insect body size. However, the small size of most insects has made measuring the morphology of their tracheal systems difficult. Hi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Shaha, Rajib Krishna (VerfasserIn)
Weitere Verfasser: Vogt, Jessica Ruth (BerichterstatterIn), Han, Chung-Souk (BerichterstatterIn), Dillon, Michael E. (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Micro-CT scanning Schistocerca americana Insect tracheal system
Umfang:6
LEADER 01000caa a22002652 4500
001 ELV03858364X
003 DE-627
005 20230625222647.0
007 cr uuu---uuuuu
008 180603s2013 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2013.06.003  |2 doi 
028 5 2 |a GBVA2013004000010.pica 
035 |a (DE-627)ELV03858364X 
035 |a (ELSEVIER)S1467-8039(13)00059-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 |a 590 
082 0 4 |a 590  |q DE-600 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Shaha, Rajib Krishna  |e verfasserin  |4 aut 
245 1 0 |a A micro-CT approach for determination of insect respiratory volume 
264 1 |c 2013transfer abstract 
300 |a 6 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a Variation in the morphology of the insect tracheal system can strongly affect respiratory physiology, with implications for everything from pest control to evolution of insect body size. However, the small size of most insects has made measuring the morphology of their tracheal systems difficult. Historical approaches including light microscopy and scanning and transmission electron microscopy (SEM, TEM) are technically difficult, labor intensive, and can introduce preparation artifacts. More recently, synchrotron X-ray microtomography (SR-μCT) has allowed for detailed analysis of tracheal morphology of diverse insects. However, linear accelerators required for SR-μCT are not readily available, making the approach unavailable for most labs. Recent advancements in microcomputed tomography (μCT) have made possible fine resolution of internal morphology of very small insects. However, μCT has never been used to quantify insect tracheal system dimensions. We measured respiratory volume of a grasshopper (Schistocerca americana) by analysis of high resolution μCT scans. Volume estimates from μCT closely matched volume estimates by water displacement as well as literature estimates for this species. The μCT approach may thus provide a widely available, cost-effective, and straightforward approach to characterizing the internal morphology of insect respiratory systems. 
520 |a Variation in the morphology of the insect tracheal system can strongly affect respiratory physiology, with implications for everything from pest control to evolution of insect body size. However, the small size of most insects has made measuring the morphology of their tracheal systems difficult. Historical approaches including light microscopy and scanning and transmission electron microscopy (SEM, TEM) are technically difficult, labor intensive, and can introduce preparation artifacts. More recently, synchrotron X-ray microtomography (SR-μCT) has allowed for detailed analysis of tracheal morphology of diverse insects. However, linear accelerators required for SR-μCT are not readily available, making the approach unavailable for most labs. Recent advancements in microcomputed tomography (μCT) have made possible fine resolution of internal morphology of very small insects. However, μCT has never been used to quantify insect tracheal system dimensions. We measured respiratory volume of a grasshopper (Schistocerca americana) by analysis of high resolution μCT scans. Volume estimates from μCT closely matched volume estimates by water displacement as well as literature estimates for this species. The μCT approach may thus provide a widely available, cost-effective, and straightforward approach to characterizing the internal morphology of insect respiratory systems. 
650 7 |a Micro-CT scanning  |2 Elsevier 
650 7 |a Schistocerca americana  |2 Elsevier 
650 7 |a Insect tracheal system  |2 Elsevier 
700 1 |a Vogt, Jessica Ruth  |4 oth 
700 1 |a Han, Chung-Souk  |4 oth 
700 1 |a Dillon, Michael E.  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:42  |g year:2013  |g number:5  |g pages:437-442  |g extent:6 
856 4 0 |u https://doi.org/10.1016/j.asd.2013.06.003  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 42  |j 2013  |e 5  |h 437-442  |g 6 
953 |2 045F  |a 590