Comparative thorax morphology of death-feigning flightless cryptorhynchine weevils (Coleoptera: Curculionidae) based on 3D reconstructions

The thorax morphology, especially the muscles and the tracheal system of three flightless species of Cryptorhynchinae is examined by digital 3D reconstructions based on synchrotron X-ray microtomography and compared to other Curculionidae. Wings, metanepisternites, and muscles functional in flight a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: van de Kamp, Thomas (VerfasserIn)
Weitere Verfasser: Cecilia, Angelica (BerichterstatterIn), dos Santos Rolo, Tomy (BerichterstatterIn), Vagovič, Patrik (BerichterstatterIn), Baumbach, Tilo (BerichterstatterIn), Riedel, Alexander (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Thanatosis Exoskeleton 3D reconstruction Musculature Curculionidae Flightlessness
Umfang:15
LEADER 01000caa a22002652 4500
001 ELV034407294
003 DE-627
005 20230625200826.0
007 cr uuu---uuuuu
008 180603s2015 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2015.07.004  |2 doi 
028 5 2 |a GBVA2015004000016.pica 
035 |a (DE-627)ELV034407294 
035 |a (ELSEVIER)S1467-8039(15)00062-6 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 |a 590 
082 0 4 |a 590  |q DE-600 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a van de Kamp, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Comparative thorax morphology of death-feigning flightless cryptorhynchine weevils (Coleoptera: Curculionidae) based on 3D reconstructions 
264 1 |c 2015transfer abstract 
300 |a 15 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a The thorax morphology, especially the muscles and the tracheal system of three flightless species of Cryptorhynchinae is examined by digital 3D reconstructions based on synchrotron X-ray microtomography and compared to other Curculionidae. Wings, metanepisternites, and muscles functional in flight are fully reduced in the species examined: Kyklioacalles roboris (Curtis), Trigonopterus scharfi Riedel and Trigonopterus vandekampi Riedel. All three share the same set of thoracic muscles, but differences exist in the shape and size of muscles. Both Trigonopterus species examined have a conspicuous fan-shaped branch of Musculus mesosterni primus contracting pro- and mesothorax, interpreted as an adaption to their thanatosis defense strategy. Trigonopterus vandekampi furthermore shows a marked increase in the size of two metacoxal muscles, which may be functional in this species' thanatosis blocking mechanisms. The metathoracic spiracle of all Trigonopterus species is located at the side of the metaventrite externally and not in the subelytral space as in other beetles. It is hypothesized that this translocation was triggered by the need to improve oxygen supply during thanatosis, when both the mesothoracic spiracle and the subelytral cavity are tightly sealed from the outside. 
520 |a The thorax morphology, especially the muscles and the tracheal system of three flightless species of Cryptorhynchinae is examined by digital 3D reconstructions based on synchrotron X-ray microtomography and compared to other Curculionidae. Wings, metanepisternites, and muscles functional in flight are fully reduced in the species examined: Kyklioacalles roboris (Curtis), Trigonopterus scharfi Riedel and Trigonopterus vandekampi Riedel. All three share the same set of thoracic muscles, but differences exist in the shape and size of muscles. Both Trigonopterus species examined have a conspicuous fan-shaped branch of Musculus mesosterni primus contracting pro- and mesothorax, interpreted as an adaption to their thanatosis defense strategy. Trigonopterus vandekampi furthermore shows a marked increase in the size of two metacoxal muscles, which may be functional in this species' thanatosis blocking mechanisms. The metathoracic spiracle of all Trigonopterus species is located at the side of the metaventrite externally and not in the subelytral space as in other beetles. It is hypothesized that this translocation was triggered by the need to improve oxygen supply during thanatosis, when both the mesothoracic spiracle and the subelytral cavity are tightly sealed from the outside. 
650 7 |a Thanatosis  |2 Elsevier 
650 7 |a Exoskeleton  |2 Elsevier 
650 7 |a 3D reconstruction  |2 Elsevier 
650 7 |a Musculature  |2 Elsevier 
650 7 |a Curculionidae  |2 Elsevier 
650 7 |a Flightlessness  |2 Elsevier 
700 1 |a Cecilia, Angelica  |4 oth 
700 1 |a dos Santos Rolo, Tomy  |4 oth 
700 1 |a Vagovič, Patrik  |4 oth 
700 1 |a Baumbach, Tilo  |4 oth 
700 1 |a Riedel, Alexander  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:44  |g year:2015  |g number:6  |g pages:509-523  |g extent:15 
856 4 0 |u https://doi.org/10.1016/j.asd.2015.07.004  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 44  |j 2015  |e 6  |h 509-523  |g 15 
953 |2 045F  |a 590