The antenna of a burrowing dragonfly larva, Onychogomphus forcipatus (Anisoptera, Gomphidae)

The larva of the dragonfly Onychogomphus forcipatus (Anisoptera, Gomphidae) has a burrowing lifestyle and antennae composed of four short and broad segments (scape, pedicel and a two-segmented flagellum). The present ultrastructural investigation revealed that different sensilla and one gland are lo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Rebora, Manuela (VerfasserIn)
Weitere Verfasser: Piersanti, Silvana (BerichterstatterIn), Salerno, Gianandrea (BerichterstatterIn), Gorb, Stanislav (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Ultrastructure Odonata Aquatic insects Mechanoreceptors Chemoreceptors Sensilla
Umfang:9
Beschreibung
Zusammenfassung:The larva of the dragonfly Onychogomphus forcipatus (Anisoptera, Gomphidae) has a burrowing lifestyle and antennae composed of four short and broad segments (scape, pedicel and a two-segmented flagellum). The present ultrastructural investigation revealed that different sensilla and one gland are located on the antenna. There is a great diversity of mechanoreceptors of different kinds. In particular club-shaped sensilla, sensilla chaetica, and tree-like sensilla show the typical structure of bristles, the most common type of mechanoreceptors, usually responding to direct touch, while numerous long thin thorny trichoid sensilla show a morphology recalling the structure of filiform hair mechanoreceptors. The latter ones are presumably important in larval Odonata for current detection and rheotactic orientation, especially in a burrowing species. On the smooth apical cuticle of the second flagellar segment, three structures are visible: (1) a small ellipsoidal pit hosting a convoluted peg, the morphology of which resembles that of a typical chemoreceptor (even if pores are lacking), (2) a couple of small pits (not investigated under TEM), and (3) one wide depression with spherical structures, the internal morphology of which lets us assume that it is a gland with unknown function. This is the first report of an antennal gland in palaeopteran insects.
The larva of the dragonfly Onychogomphus forcipatus (Anisoptera, Gomphidae) has a burrowing lifestyle and antennae composed of four short and broad segments (scape, pedicel and a two-segmented flagellum). The present ultrastructural investigation revealed that different sensilla and one gland are located on the antenna. There is a great diversity of mechanoreceptors of different kinds. In particular club-shaped sensilla, sensilla chaetica, and tree-like sensilla show the typical structure of bristles, the most common type of mechanoreceptors, usually responding to direct touch, while numerous long thin thorny trichoid sensilla show a morphology recalling the structure of filiform hair mechanoreceptors. The latter ones are presumably important in larval Odonata for current detection and rheotactic orientation, especially in a burrowing species. On the smooth apical cuticle of the second flagellar segment, three structures are visible: (1) a small ellipsoidal pit hosting a convoluted peg, the morphology of which resembles that of a typical chemoreceptor (even if pores are lacking), (2) a couple of small pits (not investigated under TEM), and (3) one wide depression with spherical structures, the internal morphology of which lets us assume that it is a gland with unknown function. This is the first report of an antennal gland in palaeopteran insects.
Beschreibung:9
DOI:10.1016/j.asd.2015.06.001