One proboscis, two tasks: Adaptations to blood-feeding and nectar-extracting in long-proboscid horse flies (Tabanidae, Philoliche)

Female Pangoniinae in the tabanid fly genus Philoliche can display remarkably elongated proboscis lengths, which are adapted for both blood- and nectar-feeding. Apart from their role as blood-sucking pests, they represent important pollinators of the South African flora. This study examines the morp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Karolyi, Florian (VerfasserIn)
Weitere Verfasser: Colville, Jonathan F. (BerichterstatterIn), Handschuh, Stephan (BerichterstatterIn), Metscher, Brian D. (BerichterstatterIn), Krenn, Harald W. (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Functional morphology Blood sucking Mouthparts Philoliche Diptera Nectar-feeding
Umfang:11
LEADER 01000caa a22002652 4500
001 ELV033701563
003 DE-627
005 20230625194740.0
007 cr uuu---uuuuu
008 180603s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2014.07.003  |2 doi 
028 5 2 |a GBVA2014004000022.pica 
035 |a (DE-627)ELV033701563 
035 |a (ELSEVIER)S1467-8039(14)00067-X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 |a 590 
082 0 4 |a 590  |q DE-600 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Karolyi, Florian  |e verfasserin  |4 aut 
245 1 0 |a One proboscis, two tasks: Adaptations to blood-feeding and nectar-extracting in long-proboscid horse flies (Tabanidae, Philoliche) 
264 1 |c 2014transfer abstract 
300 |a 11 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a Female Pangoniinae in the tabanid fly genus Philoliche can display remarkably elongated proboscis lengths, which are adapted for both blood- and nectar-feeding. Apart from their role as blood-sucking pests, they represent important pollinators of the South African flora. This study examines the morphology of the feeding apparatus of two species of long-proboscid Tabanidae: Philoliche rostrata and Philoliche gulosa – both species display adaptations for feeding from a diverse guild of long-tubed flowers, and on vertebrate blood. The heavily sclerotised proboscis can be divided into two functional units. The short, proximal piercing part is composed of the labrum-epipharynx unit, the hypopharynx and paired mandible and maxilla. The foldable distal part is composed of the prementum of the labium which solely forms the food canal and is responsible for nectar uptake via the apical labella. The proboscis works as a drinking straw, relying on a pressure gradient provided by a two-part suction pump in the head. Both proboscis and body lengths and suction pump dimensions show a significantly correlated allometric relationship with each other. This study provides detailed insights into the adaptations for a dual diet using an elongated sucking proboscis, and considers these adaptations in the context of the evolution of nectar feeding in Brachycera. 
520 |a Female Pangoniinae in the tabanid fly genus Philoliche can display remarkably elongated proboscis lengths, which are adapted for both blood- and nectar-feeding. Apart from their role as blood-sucking pests, they represent important pollinators of the South African flora. This study examines the morphology of the feeding apparatus of two species of long-proboscid Tabanidae: Philoliche rostrata and Philoliche gulosa – both species display adaptations for feeding from a diverse guild of long-tubed flowers, and on vertebrate blood. The heavily sclerotised proboscis can be divided into two functional units. The short, proximal piercing part is composed of the labrum-epipharynx unit, the hypopharynx and paired mandible and maxilla. The foldable distal part is composed of the prementum of the labium which solely forms the food canal and is responsible for nectar uptake via the apical labella. The proboscis works as a drinking straw, relying on a pressure gradient provided by a two-part suction pump in the head. Both proboscis and body lengths and suction pump dimensions show a significantly correlated allometric relationship with each other. This study provides detailed insights into the adaptations for a dual diet using an elongated sucking proboscis, and considers these adaptations in the context of the evolution of nectar feeding in Brachycera. 
650 7 |a Functional morphology  |2 Elsevier 
650 7 |a Blood sucking  |2 Elsevier 
650 7 |a Mouthparts  |2 Elsevier 
650 7 |a Philoliche  |2 Elsevier 
650 7 |a Diptera  |2 Elsevier 
650 7 |a Nectar-feeding  |2 Elsevier 
700 1 |a Colville, Jonathan F.  |4 oth 
700 1 |a Handschuh, Stephan  |4 oth 
700 1 |a Metscher, Brian D.  |4 oth 
700 1 |a Krenn, Harald W.  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:43  |g year:2014  |g number:5  |g pages:403-413  |g extent:11 
856 4 0 |u https://doi.org/10.1016/j.asd.2014.07.003  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 43  |j 2014  |e 5  |h 403-413  |g 11 
953 |2 045F  |a 590