The Last Breath: A μCT-based method for investigating the tracheal system in Hexapoda

In recent years, μCT-based studies of the insect tracheal system have become an increasingly important area of research. Nevertheless, the methods proposed in previous research for investigating the respiratory system in the three-dimensional space were described and tested based on a relatively sma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Iwan, Dariusz (VerfasserIn)
Weitere Verfasser: Kamiński, Marcin Jan (BerichterstatterIn), Raś, Marcin (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Methodology Insecta Tenebrio molitor Respiratory system X-ray micro-computed tomography (micro-CT)
Umfang:10
LEADER 01000caa a22002652 4500
001 ELV028699394
003 DE-627
005 20230625162342.0
007 cr uuu---uuuuu
008 180603s2015 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2015.02.002  |2 doi 
028 5 2 |a GBVA2015004000015.pica 
035 |a (DE-627)ELV028699394 
035 |a (ELSEVIER)S1467-8039(15)00017-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 |a 590 
082 0 4 |a 590  |q DE-600 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Iwan, Dariusz  |e verfasserin  |4 aut 
245 1 4 |a The Last Breath: A μCT-based method for investigating the tracheal system in Hexapoda 
264 1 |c 2015transfer abstract 
300 |a 10 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a In recent years, μCT-based studies of the insect tracheal system have become an increasingly important area of research. Nevertheless, the methods proposed in previous research for investigating the respiratory system in the three-dimensional space were described and tested based on a relatively small number of specimens. Additionally, the individuals studied in all these cases represented only a single post-embryonic stadium – pupa or imago – of a particular insect species. Therefore, in the current situation it is difficult to predict the reliability and possible limitations of these methods. To address this problem we conducted a methodological study, during which we used 65 individuals representing larvae, pupae and imagines of the mealworm beetle (Tenebrio molitor). In addition to the protocol previously described, which implicated freezing as a killing technique, we also tested a novel one, which was based on ethyl acetate fumigation of the specimens studied. We included step-by-step guides for the manual and semiautomatic approaches in order to facilitate the digital visualization of the tracheal system. Our investigations enabled us to generate multiple models of the tracheal system of all post-embryonic stages of the mealworm beetle. The methods used proved to be minimally invasive, thus allowing for the application of post-scanning manipulations, such as drying with critical point dryer (CPD). This approach enabled us to merge different three-dimensional models into a single picture and analyse the relationship of the tracheal system with other tissues (e.g., muscles, nervous system). We comprehensively discuss the advantages and possible limitations of the tested methods and provide practical suggestions for conducting the analyses on a wider scale. The visualizations presented in this publication are the first three-dimensional models of the respiratory system using a representative of the extremely diverse order Coleoptera. 
520 |a In recent years, μCT-based studies of the insect tracheal system have become an increasingly important area of research. Nevertheless, the methods proposed in previous research for investigating the respiratory system in the three-dimensional space were described and tested based on a relatively small number of specimens. Additionally, the individuals studied in all these cases represented only a single post-embryonic stadium – pupa or imago – of a particular insect species. Therefore, in the current situation it is difficult to predict the reliability and possible limitations of these methods. To address this problem we conducted a methodological study, during which we used 65 individuals representing larvae, pupae and imagines of the mealworm beetle (Tenebrio molitor). In addition to the protocol previously described, which implicated freezing as a killing technique, we also tested a novel one, which was based on ethyl acetate fumigation of the specimens studied. We included step-by-step guides for the manual and semiautomatic approaches in order to facilitate the digital visualization of the tracheal system. Our investigations enabled us to generate multiple models of the tracheal system of all post-embryonic stages of the mealworm beetle. The methods used proved to be minimally invasive, thus allowing for the application of post-scanning manipulations, such as drying with critical point dryer (CPD). This approach enabled us to merge different three-dimensional models into a single picture and analyse the relationship of the tracheal system with other tissues (e.g., muscles, nervous system). We comprehensively discuss the advantages and possible limitations of the tested methods and provide practical suggestions for conducting the analyses on a wider scale. The visualizations presented in this publication are the first three-dimensional models of the respiratory system using a representative of the extremely diverse order Coleoptera. 
650 7 |a Methodology  |2 Elsevier 
650 7 |a Insecta  |2 Elsevier 
650 7 |a Tenebrio molitor  |2 Elsevier 
650 7 |a Respiratory system  |2 Elsevier 
650 7 |a X-ray micro-computed tomography (micro-CT)  |2 Elsevier 
700 1 |a Kamiński, Marcin Jan  |4 oth 
700 1 |a Raś, Marcin  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:44  |g year:2015  |g number:3  |g pages:218-227  |g extent:10 
856 4 0 |u https://doi.org/10.1016/j.asd.2015.02.002  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 44  |j 2015  |e 3  |h 218-227  |g 10 
953 |2 045F  |a 590