Evaluation of the impact of large language learning models on publications in the Journal of Shoulder and Elbow Surgery

© 2025 The Author(s).

Détails bibliographiques
Publié dans:JSES international. - 2020. - 9(2025), 5 vom: 11. Sept., Seite 1803-1808
Auteur principal: Miller, Andrew S (Auteur)
Autres auteurs: Tyagi, Anisha, Sudah, Suleiman Y, Rompala, Alexander, Nicholson, Allen D, Srikumaran, Uma, Menendez, Mariano E
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:JSES international
Sujets:Journal Article AI-generated content Academic integrity Artificial intelligence ChatGPT Elbow Plagiarism detection Shoulder
LEADER 01000caa a22002652c 4500
001 NLM393647307
003 DE-627
005 20251008232200.0
007 cr uuu---uuuuu
008 251007s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jseint.2025.05.027  |2 doi 
028 5 2 |a pubmed25n1593.xml 
035 |a (DE-627)NLM393647307 
035 |a (NLM)41049689 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Miller, Andrew S  |e verfasserin  |4 aut 
245 1 0 |a Evaluation of the impact of large language learning models on publications in the Journal of Shoulder and Elbow Surgery 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2025 
500 |a Date Revised 08.10.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 The Author(s). 
520 |a Background: There has been growing interest in the application of artificial intelligence (AI) within academic research to enhance writing, data interpretation, and other tasks. However, it also raises concerns about plagiarism and fraudulent content. While AI-detection tools are available, no systematic review has examined AI use in shoulder and elbow surgery. This study evaluates AI utilization in Journal of Shoulder and Elbow Surgery (JSES) articles before and after the release of ChatGPT (Generative Pre-trained Transformer)-3.5 and explores its correlation with the country of publication 
520 |a Methods: We analyzed 232 publications in JSES, from January to April in both 2022 and 2024. Abstracts and full-length texts were manually entered and analyzed using ZeroGPT, an AI-content detector, and ChatGPT detector. A secondary analysis was performed on publications with suspected AI use of greater than 10%, 20%, 30%, 40%, and 50%. Variables analyzed were year of publication, country of origin, and probability of AI use. Univariate analyses according to geographic region were conducted on publications with a suspected AI percentage > 10% and > 20% 
520 |a Results: A total of 232 publications were identified, 114 from January to April 2022 (pre-ChatGPT) and 118 from January to April 2024 (post-ChatGPT). The average percentage AI generation was 26% ± 18% within the abstracts and 5% ± 3% within the full-body text of included publications. While there was no significant difference in the suspected use of AI within the full texts before and after the launch of ChatGPT (4.7% ± 3.3% in 2022 vs. 5.3% ± 3.6% in 2024; P = .19), there was a significant increase in the suspected use of AI within the abstracts of articles published after the launch of ChatGPT(21.1% ± 12.8% vs. 30.1% ± 21.6%; P = .0002. Abstracts with a suspected AI percentage > 10% constituted 74.6% of the publications in 2022 and 86.4% in 2024; P = .003. Similarly, abstracts with suspected AI percentage exceeding 20%, 30%, 40%, and 50% also demonstrated statistically significant increases between the 2 periods (P < .05 for all). Univariate analysis revealed that European publications had significantly lower AI content above > 10% (P = .04; odds ratio 0.53, 95% confidence interval: 0.26-0.81) 
520 |a Conclusion: This study highlights increased use of AI within the writing of JSES publications since the launch of ChatGPT-3.5. While the integration of AI introduces new opportunities in scientific research, there are ethical and methodological challenges that must be carefully considered 
650 4 |a Journal Article 
650 4 |a AI-generated content 
650 4 |a Academic integrity 
650 4 |a Artificial intelligence 
650 4 |a ChatGPT 
650 4 |a Elbow 
650 4 |a Plagiarism detection 
650 4 |a Shoulder 
700 1 |a Tyagi, Anisha  |e verfasserin  |4 aut 
700 1 |a Sudah, Suleiman Y  |e verfasserin  |4 aut 
700 1 |a Rompala, Alexander  |e verfasserin  |4 aut 
700 1 |a Nicholson, Allen D  |e verfasserin  |4 aut 
700 1 |a Srikumaran, Uma  |e verfasserin  |4 aut 
700 1 |a Menendez, Mariano E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t JSES international  |d 2020  |g 9(2025), 5 vom: 11. Sept., Seite 1803-1808  |w (DE-627)NLM307818438  |x 2666-6383  |7 nnas 
773 1 8 |g volume:9  |g year:2025  |g number:5  |g day:11  |g month:09  |g pages:1803-1808 
856 4 0 |u http://dx.doi.org/10.1016/j.jseint.2025.05.027  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_50 
912 |a GBV_ILN_65 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2025  |e 5  |b 11  |c 09  |h 1803-1808