Diagnostic analytics for the mixed Poisson INGARCH model with applications

© 2025 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 52(2025), 13 vom: 18., Seite 2495-2523
Auteur principal: Dang, Wenjie (Auteur)
Autres auteurs: Zhu, Fukang, Xu, Nuo, Liu, Shuangzhe
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Case deletion EM algorithm INGACH model local influence mixed Poisson time series of counts
LEADER 01000naa a22002652c 4500
001 NLM393633934
003 DE-627
005 20251007232038.0
007 cr uuu---uuuuu
008 251007s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2025.2476658  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM393633934 
035 |a (NLM)41048362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dang, Wenjie  |e verfasserin  |4 aut 
245 1 0 |a Diagnostic analytics for the mixed Poisson INGARCH model with applications 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2025 
500 |a Date Revised 06.10.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In statistical diagnosis and sensitivity analysis, the local influence method plays a crucial role and is sometimes more advantageous than other methods. The mixed Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model is built on a flexible family of mixed Poisson distributions. It not only encompasses the negative binomial INGARCH model but also allows for the introduction of the Poisson-inverse Gaussian INGARCH model and the Poisson generalized hyperbolic secant INGARCH model. This paper applies the local influence analysis method to count time series data within the framework of the mixed Poisson INGARCH model. For parameter estimation, the Expectation-Maximization algorithm is utilized. In the context of local influence analysis, two global influence methods (generalized Cook distance and Q-distance) and four perturbations-case weights perturbation, data perturbation, additive perturbation, and scale perturbation-are considered to identify influential points. Finally, the feasibility and effectiveness of the proposed methods are demonstrated through simulations and analysis of a real data set 
650 4 |a Journal Article 
650 4 |a Case deletion 
650 4 |a EM algorithm 
650 4 |a INGACH model 
650 4 |a local influence 
650 4 |a mixed Poisson 
650 4 |a time series of counts 
700 1 |a Zhu, Fukang  |e verfasserin  |4 aut 
700 1 |a Xu, Nuo  |e verfasserin  |4 aut 
700 1 |a Liu, Shuangzhe  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 13 vom: 18., Seite 2495-2523  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:13  |g day:18  |g pages:2495-2523 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2025.2476658  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 13  |b 18  |h 2495-2523