Horn-Inspired Hierarchical Tubular Composites for Recoverable High-Energy Absorption

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 04. Okt., Seite e13573
Auteur principal: Chen, Jiewei (Auteur)
Autres auteurs: Zhao, Nifang, Li, Meng, Wang, Yaoguang, Gao, Weiwei, Bai, Hao
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article bioinspired materials hierarchical structure recoverable energy absorption sheep horn
LEADER 01000naa a22002652c 4500
001 NLM393596354
003 DE-627
005 20251004232315.0
007 cr uuu---uuuuu
008 251004s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202513573  |2 doi 
028 5 2 |a pubmed25n1589.xml 
035 |a (DE-627)NLM393596354 
035 |a (NLM)41045112 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Jiewei  |e verfasserin  |4 aut 
245 1 0 |a Horn-Inspired Hierarchical Tubular Composites for Recoverable High-Energy Absorption 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Recoverable energy-absorbing materials are crucial for advancing impact-resistant systems; however, they are typically limited by low energy dissipation (<1 MJ·m-3). The horn of bighorn sheep (Ovis canadensis) exhibits outstanding energy dissipation and shape recovery, enabled by multiscale mechanisms including aligned tubules and lamellar keratin cells, along with hydration-driven self-recovery. Inspired by this hierarchical architecture, a recoverable porous energy-absorbing composite through a modified gelation-assisted self-assembly method is fabricated to construct a microtubular scaffold with lamellar-aligned nanoplatelets, which is subsequently infiltrated with a dynamic covalent epoxy matrix. The optimized composite exhibits exceptional energy absorption (10 MJ·m-3), exceeding conventional recoverable architected materials by an order of magnitude, while simultaneously achieving high compressive strength (> 50 MPa), low density (1.1 g·cm-3), and stable cyclic shape recovery performance. These mechanical properties arise from synergistic multiscale toughening mechanisms, including tubular buckling (macroscale), lamellar crack deflection and interfacial delamination (microscale), and matrix viscoelasticity (nanoscale). The epoxy matrix further contributes to reversible deformation and cyclic damage recovery. This study establishes a scalable biomimetic strategy for engineering lightweight, high-strength, and reusable materials with high energy dissipation, addressing critical challenges in potential protective applications 
650 4 |a Journal Article 
650 4 |a bioinspired materials 
650 4 |a hierarchical structure 
650 4 |a recoverable energy absorption 
650 4 |a sheep horn 
700 1 |a Zhao, Nifang  |e verfasserin  |4 aut 
700 1 |a Li, Meng  |e verfasserin  |4 aut 
700 1 |a Wang, Yaoguang  |e verfasserin  |4 aut 
700 1 |a Gao, Weiwei  |e verfasserin  |4 aut 
700 1 |a Bai, Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 04. Okt., Seite e13573  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:04  |g month:10  |g pages:e13573 
856 4 0 |u http://dx.doi.org/10.1002/adma.202513573  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 04  |c 10  |h e13573