Learning Dynamic Graph Embeddings with Neural Controlled Differential Equations

This paper focuses on representation learning for dynamic graphs with temporal interactions. A fundamental issue is that both the graph structure and the nodes own their own dynamics, and their blending induces intractable complexity in the temporal evolution over graphs. Drawing inspiration from th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 03. Okt.
1. Verfasser: Qin, Tiexin (VerfasserIn)
Weitere Verfasser: Walker, Benjamin, Lyons, Terry, Yan, Hong, Li, Haoliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM393572021
003 DE-627
005 20251004232152.0
007 cr uuu---uuuuu
008 251004s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3617660  |2 doi 
028 5 2 |a pubmed25n1589.xml 
035 |a (DE-627)NLM393572021 
035 |a (NLM)41042662 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qin, Tiexin  |e verfasserin  |4 aut 
245 1 0 |a Learning Dynamic Graph Embeddings with Neural Controlled Differential Equations 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a This paper focuses on representation learning for dynamic graphs with temporal interactions. A fundamental issue is that both the graph structure and the nodes own their own dynamics, and their blending induces intractable complexity in the temporal evolution over graphs. Drawing inspiration from the recent progress of physical dynamic models in deep neural networks, we propose Graph Neural Controlled Differential Equations (GN-CDEs), a continuous-time framework that jointly models node embeddings and structural dynamics by incorporating a graph enhanced neural network vector field with a time-varying graph path as the control signal. Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without piecewise integration, the capability to calibrate trajectories with subsequent data, and robustness to missing observations. Empirical evaluation on a range of dynamic graph representation learning tasks demonstrates the effectiveness of our proposed approach in capturing the complex dynamics of dynamic graphs 
650 4 |a Journal Article 
700 1 |a Walker, Benjamin  |e verfasserin  |4 aut 
700 1 |a Lyons, Terry  |e verfasserin  |4 aut 
700 1 |a Yan, Hong  |e verfasserin  |4 aut 
700 1 |a Li, Haoliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 03. Okt.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:03  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3617660  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 03  |c 10