HFM-GS : half-face mapping 3DGS avatar based real-time HMD removal

In extended reality (XR) applications, enhancing user perception often necessitates head-mounted display (HMD) removal. However, existing methods suffer from low time performance and suboptimal reconstruction quality. In this paper, we propose a half face mapping 3D Gaussian splatting avatar based H...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2025) vom: 02. Okt.
1. Verfasser: Wang, Kangyu (VerfasserIn)
Weitere Verfasser: Wu, Jian, Fan, Runze, Zhang, Hongwen, Im, Sio Kei, Wang, Lili
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In extended reality (XR) applications, enhancing user perception often necessitates head-mounted display (HMD) removal. However, existing methods suffer from low time performance and suboptimal reconstruction quality. In this paper, we propose a half face mapping 3D Gaussian splatting avatar based HMD removal method (HFM-GS), which can perform real-time and high-fidelity online restoration of the complete face in HMD-occluded videos for XR applications after a short un-occluded face registration. We establish a mapping field between the upper and lower face Gaussians to enhance the adaptability to deformation. Then, we introduce correlation weight-based sampling to improve time performance and handle variations in the number of Gaussians. At last, we ensure model robustness through Gaussian Segregation Strategy. Compared to two state-of-the-art methods, our method achieves better quality and time performance. The results of the user study show that fidelity is significantly improved with our method
Beschreibung:Date Revised 02.10.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0506
DOI:10.1109/TVCG.2025.3616801