|  |  |  |  | 
| LEADER | 01000naa a22002652c 4500 | 
| 001 | NLM393153479 | 
| 003 | DE-627 | 
| 005 | 20250927232314.0 | 
| 007 | cr uuu---uuuuu | 
| 008 | 250927s2025    xx |||||o     00| ||eng c | 
| 024 | 7 |  | |a 10.1109/TPAMI.2025.3615144 
  |2 doi | 
| 028 | 5 | 2 | |a pubmed25n1582.xml | 
| 035 |  |  | |a (DE-627)NLM393153479 | 
| 035 |  |  | |a (NLM)41004360 | 
| 040 |  |  | |a DE-627 
  |b ger 
  |c DE-627 
  |e rakwb | 
| 041 |  |  | |a eng | 
| 100 | 1 |  | |a Luo, Xinglong 
  |e verfasserin 
  |4 aut | 
| 245 | 1 | 0 | |a Learning Efficient Meshflow and Optical Flow from Event Cameras | 
| 264 |  | 1 | |c 2025 | 
| 336 |  |  | |a Text 
  |b txt 
  |2 rdacontent | 
| 337 |  |  | |a ƒaComputermedien 
  |b c 
  |2 rdamedia | 
| 338 |  |  | |a ƒa Online-Ressource 
  |b cr 
  |2 rdacarrier | 
| 500 |  |  | |a Date Revised 26.09.2025 | 
| 500 |  |  | |a published: Print-Electronic | 
| 500 |  |  | |a Citation Status Publisher | 
| 520 |  |  | |a In this paper, we explore the problem of event-based meshflow estimation, a novel task that involves predicting a spatially smooth sparse motion field from event cameras. To start, we review the state-of-the-art in event-based flow estimation, highlighting two key areas for further research: i) the lack of meshflow-specific event datasets and methods, and ii) the underexplored challenge of event data density. First, we generate a large-scale High-Resolution Event Meshflow (HREM) dataset, which showcases its superiority by encompassing the merits of high resolution at 1280×720, handling dynamic objects and complex motion patterns, and offering both optical flow and meshflow labels. These aspects have not been fully explored in previous works. Besides, we propose Efficient Event-based MeshFlow (EEMFlow) network, a lightweight model featuring a specially crafted encoder-decoder architecture to facilitate swift and accurate meshflow estimation. Furthermore, we upgrade EEMFlow network to support dense event optical flow, in which a Confidence-induced Detail Completion (CDC) module is proposed to preserve sharp motion boundaries. We conduct comprehensive experiments to show the exceptional performance and runtime efficiency (30× faster) of our EEMFlow model compared to the recent state-of-the-art flow method. As an extension, we expand HREM into HREM+, a multi-density event dataset contributing to a thorough study of the robustness of existing methods across data with varying densities, and propose an Adaptive Density Module (ADM) to adjust the density of input event data to a more optimal range, enhancing the model's generalization ability. We empirically demonstrate that ADM helps to significantly improve the performance of EEMFlow and EEMFlow+ by 8% and 10%, respectively | 
| 650 |  | 4 | |a Journal Article | 
| 700 | 1 |  | |a Luo, Ao 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Luo, Kunming 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Wang, Zhengning 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Tan, Ping 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Zeng, Bing 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Liu, Shuaicheng 
  |e verfasserin 
  |4 aut | 
| 773 | 0 | 8 | |i Enthalten in 
  |t IEEE transactions on pattern analysis and machine intelligence 
  |d 1979 
  |g PP(2025) vom: 26. Sept. 
  |w (DE-627)NLM098212257 
  |x 1939-3539 
  |7 nnas | 
| 773 | 1 | 8 | |g volume:PP 
  |g year:2025 
  |g day:26 
  |g month:09 | 
| 856 | 4 | 0 | |u http://dx.doi.org/10.1109/TPAMI.2025.3615144 
  |3 Volltext | 
| 912 |  |  | |a GBV_USEFLAG_A | 
| 912 |  |  | |a SYSFLAG_A | 
| 912 |  |  | |a GBV_NLM | 
| 912 |  |  | |a GBV_ILN_350 | 
| 951 |  |  | |a AR | 
| 952 |  |  | |d PP 
  |j 2025 
  |b 26 
  |c 09 |