Growing Sustainable Barrier Coatings from Edible Fungal Mycelia
Cellulose nanofibrils (CNFs) have emerged as sustainable alternatives to single-use plastics due to their favorable barrier properties; however, their inherent hydrophilic properties limit their efficacy as water barriers. In this work, we present a novel approach using a CNF matrix and fungal mycel...
| Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 41(2025), 39 vom: 07. Okt., Seite 26751-26759 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2025
|
| Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
| Schlagworte: | Journal Article Cellulose 9004-34-6 Water 059QF0KO0R |
| Zusammenfassung: | Cellulose nanofibrils (CNFs) have emerged as sustainable alternatives to single-use plastics due to their favorable barrier properties; however, their inherent hydrophilic properties limit their efficacy as water barriers. In this work, we present a novel approach using a CNF matrix and fungal mycelia to grow coatings directly onto a range of paper and textile substrates to enhance their liquid water resistance via a sustainable, low-energy process. We demonstrate that CNF-based mycelial coatings exhibit a water contact angle (CA) of 139.1° ± 3.5° and a water uptake of 29.6 g m-2 ± 3.5 g m-2 after 3 days of growth, compared to a CA of 27.2° ± 5.0° and a water uptake value of 80.0 g m-2 ± 12.8 g m-2 for a CNF coating alone. Furthermore, the CNF-based coating still retained excellent oil and grease barrier properties (Kit Test of 12), air permeability, and oxygen transmission rates even after at least 3 days of mycelial growth. Comparing CNFs and pulp as a matrix for the coating, we find that CNF facilitates faster growth, a higher maximum CA, and a lower water uptake than pulp. Finally, we demonstrate that both the hyphal structure and surface hydrophobicity are playing a role in water barrier functionality by comparing the grown mycelial coating to a coating of fungal hydrophobic surface proteins─hydrophobins─alone. Collectively, our work demonstrates that growing CNF-based mycelial coatings onto paper or textile substrates offers a potentially scalable solution to create water-resistant barriers on diverse substrates, creating more sustainable alternatives to single-use plastics |
|---|---|
| Beschreibung: | Date Completed 07.10.2025 Date Revised 07.10.2025 published: Print-Electronic Citation Status MEDLINE |
| ISSN: | 1520-5827 |
| DOI: | 10.1021/acs.langmuir.5c03185 |