3DFACENet : 3D Facial Attractiveness Computation and Enhancement Network

The development of facial editing, virtual makeup, AR/VR technologies and 3D games applications underscore the need for advanced 3D facial attractiveness research. However, due to the lack of 3D beauty face data and the complexity of handling 3D face data, 3D facial aesthetics research remains large...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 11., Seite 5819-5831
Auteur principal: Xie, Yuan (Auteur)
Autres auteurs: Peng, Tianhao, Li, Mu, Wu, Baoyuan, Zhang, David
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM392639939
003 DE-627
005 20250923233015.0
007 cr uuu---uuuuu
008 250917s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3607629  |2 doi 
028 5 2 |a pubmed25n1578.xml 
035 |a (DE-627)NLM392639939 
035 |a (NLM)40953422 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Yuan  |e verfasserin  |4 aut 
245 1 0 |a 3DFACENet  |b 3D Facial Attractiveness Computation and Enhancement Network 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The development of facial editing, virtual makeup, AR/VR technologies and 3D games applications underscore the need for advanced 3D facial attractiveness research. However, due to the lack of 3D beauty face data and the complexity of handling 3D face data, 3D facial aesthetics research remains largely unexplored. To fill this gap, we propose 3DFACENet, an innovative system designed for the computation and enhancement of 3D facial attractiveness. Our approach employs a 3D facial reconstruction encoder to generate encoded vectors from images and a render module to obtain 3D face models. To minimize computational load, we innovatively propose an attractiveness computation module which leverages 3D shape and texture coefficients rather than 3D mesh models to access facial attractiveness, achieving state-of-the-art results. To balance aesthetic enhancement and identity preservation, we design a controllable beautification decoder. For the first time, we introduce the concept of "attractive centers", demonstrating that an individual's distance to these centers is significantly negatively correlated with their beauty scores. Our beautification decoder edits 3D facial coefficients towards these centers, achieving a significant and controllable enhancement in facial attractiveness. Extensive experiments on the SCUT-FBP5500 and MEBeauty dataset validate the effectiveness and feasibility of 3DFACENet 
650 4 |a Journal Article 
700 1 |a Peng, Tianhao  |e verfasserin  |4 aut 
700 1 |a Li, Mu  |e verfasserin  |4 aut 
700 1 |a Wu, Baoyuan  |e verfasserin  |4 aut 
700 1 |a Zhang, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 11., Seite 5819-5831  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:11  |g pages:5819-5831 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3607629  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 11  |h 5819-5831