Rethinking Generalized Zero-Shot Learning : A Synthesized Per-Instance Attribute Perspective

Generalized zero-shot learning (GZSL) shows great potential for improving generalization to unseen classes in real-world scenarios. However, most GZSL methods depend on benchmark datasets with per-class attribute annotations, which creates a large semantic gap and worsens the domain shift problem in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 12., Seite 5847-5859
1. Verfasser: Tang, Chenwei (VerfasserIn)
Weitere Verfasser: Wang, Ying, Xie, Wei, Zhang, Qianjun, Xiao, Rong, He, Zhenan, Lv, Jiancheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article