Interfacial Bonding Mechanism of Ethyl Cyanoacrylate Adhesive on Diverse Inorganic Surfaces : A Density Functional Theory Study

Cyanoacrylate-based instant adhesives, commonly known as super glues, are widely used across various fields owing to their high adhesive performance and rapid curing. However, the molecular-level understanding of their interfacial bonding mechanism remains limited. In this study, we investigated the...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 41(2025), 36 vom: 16. Sept., Seite 24776-24785
Auteur principal: Kubo, Koki (Auteur)
Autres auteurs: Sumiya, Yosuke
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM392629836
003 DE-627
005 20250920232937.0
007 cr uuu---uuuuu
008 250916s2025 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5c03183  |2 doi 
028 5 2 |a pubmed25n1575.xml 
035 |a (DE-627)NLM392629836 
035 |a (NLM)40882146 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kubo, Koki  |e verfasserin  |4 aut 
245 1 0 |a Interfacial Bonding Mechanism of Ethyl Cyanoacrylate Adhesive on Diverse Inorganic Surfaces  |b A Density Functional Theory Study 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cyanoacrylate-based instant adhesives, commonly known as super glues, are widely used across various fields owing to their high adhesive performance and rapid curing. However, the molecular-level understanding of their interfacial bonding mechanism remains limited. In this study, we investigated the adhesion behavior of ethyl cyanoacrylate (ECA) on typical inorganic surfaces such as Au, Cu, Cu2O, Al2O3, and SiO2 using periodic density functional theory (DFT) calculations. ECA is known to undergo hydrolysis, which converts its ester group into a carboxyl group. We evaluated how this transformation influences its adhesive properties. Prior to hydrolysis, adhesion to the Au surface is only governed by dispersion interactions, whereas on the other surfaces, the cyano and/or ester groups form charge-transfer interactions, contributing to stronger adhesion. We further explored the hydrolysis mechanism using a reaction path search method, which showed that the reaction proceeds rapidly in the presence of two water molecules and a proton. After hydrolysis, adhesion on Au and Cu surfaces remained largely unchanged. In contrast, adhesion strength significantly increased on Cu2O, Al2O3, and SiO2, mainly due to enhanced charge-transfer with the surface by the carboxyl and cyano groups of the hydrolyzed ECA. Notably, a barrierless proton transfer was observed on the Cu2O surface, leading to a substantial increase in adhesion strength. These findings provide molecular-level insights into interfacial interactions in ECA-adhesive systems and offer valuable guidance for designing next-generation instant adhesives 
650 4 |a Journal Article 
700 1 |a Sumiya, Yosuke  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 41(2025), 36 vom: 16. Sept., Seite 24776-24785  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:41  |g year:2025  |g number:36  |g day:16  |g month:09  |g pages:24776-24785 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5c03183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 41  |j 2025  |e 36  |b 16  |c 09  |h 24776-24785