CompletionMamba : Taming State Space Model for Point Cloud Completion

Point cloud completion aims to reconstruct complete 3D shapes from partial scans. The long-range dependencies between points and shape perception are crucial for this task. While Transformers are effective due to their global processing ability, the quadratic complexity of their attention mechanism...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 25., Seite 5473-5485
1. Verfasser: Fu, Zhiheng (VerfasserIn)
Weitere Verfasser: Zhang, Jiehua, Wang, Longguang, Xu, Lian, Laga, Hamid, Guo, Yulan, Boussaid, Farid, Bennamoun, Mohammed
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM39171709X
003 DE-627
005 20250903232808.0
007 cr uuu---uuuuu
008 250903s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3597041  |2 doi 
028 5 2 |a pubmed25n1554.xml 
035 |a (DE-627)NLM39171709X 
035 |a (NLM)40853794 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Zhiheng  |e verfasserin  |4 aut 
245 1 0 |a CompletionMamba  |b Taming State Space Model for Point Cloud Completion 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point cloud completion aims to reconstruct complete 3D shapes from partial scans. The long-range dependencies between points and shape perception are crucial for this task. While Transformers are effective due to their global processing ability, the quadratic complexity of their attention mechanism makes them unsuitable for long sequences when computational resources are constrained. As an alternative, State Space Models (SSMs) provide a memory-efficient solution for handling long-range dependencies, yet applying them directly to unordered point clouds presents challenges because of their intrinsic causality requirements. Existing methods attempt to address this by sorting points along a single axis. This, however, often overlooks complex causal relationships in 3D space since adjacency relationships based on Euclidean distance between points in the 3D space may not be preserved by this linear arrangement. To overcome this issue, we introduce CompletionMamba, a novel SSM-based network designed to harness SSMs for capturing both global and local dependencies within a point cloud. Initially, the input point cloud is causally structured by rearranging its coordinates. Then, a local SSM framework is proposed that defines neighborhood spaces around each point based on Euclidean distance, enhancing the causal structure. Although local SSM enhances relationships in short and long distance sequences, it still lacks full shape modeling of point cloud. To address this, we propose a novel shape-aware Mamba by integrating the shape code of each 3D shape into the model, enabling shape information propagation to all points. Our experiments show that CompletionMamba achieves state-of-the-art performance on both the MVP and PCN datasets 
650 4 |a Journal Article 
700 1 |a Zhang, Jiehua  |e verfasserin  |4 aut 
700 1 |a Wang, Longguang  |e verfasserin  |4 aut 
700 1 |a Xu, Lian  |e verfasserin  |4 aut 
700 1 |a Laga, Hamid  |e verfasserin  |4 aut 
700 1 |a Guo, Yulan  |e verfasserin  |4 aut 
700 1 |a Boussaid, Farid  |e verfasserin  |4 aut 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 25., Seite 5473-5485  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:25  |g pages:5473-5485 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3597041  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 25  |h 5473-5485