InfoBound : A Provable Information-Bounds Inspired Framework for Both OoD Generalization and OoD Detection

In real-world scenarios, distribution shifts give rise to the importance of two problems: out-of-distribution (OoD) generalization, which focuses on models' generalization ability against covariate shifts (i.e., the changes of environments), and OoD detection, which aims to be aware of semantic...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 10227-10242
Auteur principal: Zhu, Lin (Auteur)
Autres auteurs: Yang, Yifeng, Nie, Zichao, Gao, Yuan, Li, Jiarui, Gu, Qinying, Wang, Xinbing, Zhou, Chenghu, Ye, Nanyang
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390617644
003 DE-627
005 20251007231853.0
007 cr uuu---uuuuu
008 250806s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3595676  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM390617644 
035 |a (NLM)40758520 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Lin  |e verfasserin  |4 aut 
245 1 0 |a InfoBound  |b A Provable Information-Bounds Inspired Framework for Both OoD Generalization and OoD Detection 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In real-world scenarios, distribution shifts give rise to the importance of two problems: out-of-distribution (OoD) generalization, which focuses on models' generalization ability against covariate shifts (i.e., the changes of environments), and OoD detection, which aims to be aware of semantic shifts (i.e., test-time unseen classes). Real-world testing environments often involve a combination of both covariate and semantic shifts. While numerous methods have been proposed to address these critical issues, only a few works tackled them simultaneously. Moreover, prior works often improve one problem but sacrifice the other. To overcome these limitations, we delve into boosting OoD detection and OoD generalization from the perspective of information theory, which can be easily applied to existing models and different tasks. Building upon the theoretical bounds for mutual information and conditional entropy, we provide a unified approach, composed of Mutual Information Minimization (MI-Min) and Conditional Entropy Maximizing (CE-Max). Extensive experiments and comprehensive evaluations on multi-label image classification and object detection have demonstrated the superiority of our method. It successfully mitigates trade-offs between the two challenges compared to competitive baselines 
650 4 |a Journal Article 
700 1 |a Yang, Yifeng  |e verfasserin  |4 aut 
700 1 |a Nie, Zichao  |e verfasserin  |4 aut 
700 1 |a Gao, Yuan  |e verfasserin  |4 aut 
700 1 |a Li, Jiarui  |e verfasserin  |4 aut 
700 1 |a Gu, Qinying  |e verfasserin  |4 aut 
700 1 |a Wang, Xinbing  |e verfasserin  |4 aut 
700 1 |a Zhou, Chenghu  |e verfasserin  |4 aut 
700 1 |a Ye, Nanyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 01. Okt., Seite 10227-10242  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:01  |g month:10  |g pages:10227-10242 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3595676  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 01  |c 10  |h 10227-10242