Hydrostatic Pressure Effects on the Mechanical, Thermodynamic, Structural, Electronic, and Optical Attributes of AcGaO3 : Implications for Renewable Energy Systems

© 2025 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 46(2025), 21 vom: 05. Aug., Seite e70199
Auteur principal: Murtaza, Hudabia (Auteur)
Autres auteurs: Ain, Quratul, Kumar, Abhinav, Ali, Atif Mossad, Oza, Ankit Dilipkumar, Munir, Junaid
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article DFT Wien2K bandgap engineering perovskite pressure application
LEADER 01000naa a22002652c 4500
001 NLM390518867
003 DE-627
005 20250802232750.0
007 cr uuu---uuuuu
008 250802s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.70199  |2 doi 
028 5 2 |a pubmed25n1518.xml 
035 |a (DE-627)NLM390518867 
035 |a (NLM)40751393 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Murtaza, Hudabia  |e verfasserin  |4 aut 
245 1 0 |a Hydrostatic Pressure Effects on the Mechanical, Thermodynamic, Structural, Electronic, and Optical Attributes of AcGaO3  |b Implications for Renewable Energy Systems 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley Periodicals LLC. 
520 |a Bandgap engineering is the process of modifying a material's electronic structure to optimize its bandgap for specific applications. Applying pressure is an effective technique to alter a material's physical properties to meet device requirements. In this manuscript, we have investigated the impact of bandgap engineering through pressure application on the physical characteristics of AcGaO3. Using the Wien2K code and the FP-LAPW method, we evaluated the material's properties under pressures ranging from 0 to 30 GPa, with additions of 5 GPa in each calculation. The Modified Becke-Johnson approximation was employed to accurately account for exchange-correlation effects. The elastic constants show a significant decrease with increasing pressure, indicating a reduction in the material's resistance to external strain. Lower speed values of the elastic waves suggest that the atomic bonding becomes weaker as the pressure is enhanced. Similarly, the Debye and melting temperatures decline as pressure increases. Electronic properties reveal a reduction in the indirect bandgap, while optical properties exhibit a shift from the higher energy region to the lower energy region under elevated pressures. The optical properties report a significant reduction in the polarization ability, absorption, and conductivity as the pressure is increased. This approach opens new possibilities for technological applications, as AcGaO3's reduced bandgap and optical characteristics in the visible area make it an attractive contender for next-generation optoelectronic and energy storage devices 
650 4 |a Journal Article 
650 4 |a DFT 
650 4 |a Wien2K 
650 4 |a bandgap engineering 
650 4 |a perovskite 
650 4 |a pressure application 
700 1 |a Ain, Quratul  |e verfasserin  |4 aut 
700 1 |a Kumar, Abhinav  |e verfasserin  |4 aut 
700 1 |a Ali, Atif Mossad  |e verfasserin  |4 aut 
700 1 |a Oza, Ankit Dilipkumar  |e verfasserin  |4 aut 
700 1 |a Munir, Junaid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 46(2025), 21 vom: 05. Aug., Seite e70199  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:46  |g year:2025  |g number:21  |g day:05  |g month:08  |g pages:e70199 
856 4 0 |u http://dx.doi.org/10.1002/jcc.70199  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2025  |e 21  |b 05  |c 08  |h e70199