Study on selective recovery of lithium from cathode materials of decommissioned lithium batteries and its impact on corporate economic and environmental benefits
With the accelerated depletion of non-renewable resources and increased demand for lithium batteries, green recycling of lithium has become a key issue nowadays. In this study, the effects of the mass ratio of potassium persulfate to the active material of battery cathode material, roasting temperat...
Publié dans: | Environmental technology. - 1993. - (2025) vom: 07. Mai, Seite 1-14 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2025
|
Accès à la collection: | Environmental technology |
Sujets: | Journal Article Decommissioned lithium batteries corporate environmental performance economic benefits selective extraction water leaching |
Résumé: | With the accelerated depletion of non-renewable resources and increased demand for lithium batteries, green recycling of lithium has become a key issue nowadays. In this study, the effects of the mass ratio of potassium persulfate to the active material of battery cathode material, roasting temperature, time, liquid-solid ratio and leaching time on the leaching rate of lithium, cobalt, nickel and manganese were investigated. For lithium-cobalt oxide battery materials, the optimal conditions were a mass ratio of K₂S₂O₇ to LiCoO₂ of 2:3, a roasting temperature of 700 °C for 60 min, and a lithium leaching rate of 98.51% and a selective leaching rate of 99.86%. For the ternary material NCM523, the optimal conditions were 1:2 mass ratio, and the lithium leaching rate reached 98.97%. The method has a positive corporate environmental impact by reducing the need for hazardous chemicals, lowering waste and operating costs, and avoiding harmful emissions. It is scalable and cost-effective and meets the needs of the battery recycling industry for environmentally friendly resource recovery. The K2S2O₇roasting-water leaching process proposed in this study effectively overcomes the problems of acid depletion and environmental pollution in the traditional recovery process, and provides a green and sustainable solution for the efficient recovery of lithium in lithium batteries in the future |
---|---|
Description: | Date Revised 07.05.2025 published: Print-Electronic Citation Status Publisher |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2025.2499973 |