Selective Lower-Occupied Through-Bond Interactions for Efficient Organic Phosphorescence Enabling High-Resolution Long-Wavelength Afterglow
© 2025 Wiley‐VCH GmbH.
| Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 24. Apr., Seite e2502611 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , , , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2025
|
| Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
| Sujets: | Journal Article afterglow emission energy gap law high‐resolution imaging nanoparticle phosphorescence |
| Résumé: | © 2025 Wiley‐VCH GmbH. Persistent organic room-temperature phosphorescence (RTP) enables high-resolution afterglow bioimaging, independent of autofluorescence. However, the yield of organic RTP in the long-wavelength region is generally low, which limits the high-resolution information that can be obtained from the long-wavelength region. Moreover, this makes it impossible to obtain multicolor and high-resolution afterglow images. This report describes a molecule containing no atoms from the fourth or higher period that exhibits efficient red RTP in high yield. A molecule with red phosphorescent chromophores substituted with multiple phenylthio groups reached an RTP yield of 46.3% and an RTP lifetime of 0.43 s in an appropriate crystalline host medium. The selective lower-occupied through-bond or through-space interactions among molecules significantly enhance the phosphorescence in the long-wavelength region. The highly efficient and bright red persistent RTP induces a red afterglow from individual nanoparticles. Tuning the selective lower-occupied through-bond or through-space interactions allows for the design of high-performance RTP dyes and offers a novel approach to explore high-resolution full-color afterglow imaging |
|---|---|
| Description: | Date Revised 24.04.2025 published: Print-Electronic Citation Status Publisher |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202502611 |