Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation

The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 18. März
1. Verfasser: Zhu, Chuang (VerfasserIn)
Weitere Verfasser: Liu, Kebin, Tang, Wenqi, Mei, Ke, Zou, Jiaqi, Huang, Tiejun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article