LightVA : Lightweight Visual Analytics With LLM Agent-Based Task Planning and Execution

Visual analytics (VA) requires analysts to iteratively propose analysis tasks based on observations and execute tasks by creating visualizations and interactive exploration to gain insights. This process demands skills in programming, data processing, and visualization tools, highlighting the need f...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 9 vom: 03. Aug., Seite 6162-6177
Auteur principal: Zhao, Yuheng (Auteur)
Autres auteurs: Wang, Junjie, Xiang, Linbing, Zhang, Xiaowen, Guo, Zifei, Turkay, Cagatay, Zhang, Yu, Chen, Siming
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385452675
003 DE-627
005 20250807232000.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3496112  |2 doi 
028 5 2 |a pubmed25n1523.xml 
035 |a (DE-627)NLM385452675 
035 |a (NLM)40030374 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Yuheng  |e verfasserin  |4 aut 
245 1 0 |a LightVA  |b Lightweight Visual Analytics With LLM Agent-Based Task Planning and Execution 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual analytics (VA) requires analysts to iteratively propose analysis tasks based on observations and execute tasks by creating visualizations and interactive exploration to gain insights. This process demands skills in programming, data processing, and visualization tools, highlighting the need for a more intelligent, streamlined VA approach. Large language models (LLMs) have recently been developed as agents to handle various tasks with dynamic planning and tool-using capabilities, offering the potential to enhance the efficiency and versatility of VA. We propose LightVA, a lightweight VA framework that supports task decomposition, data analysis, and interactive exploration through human-agent collaboration. Our method is designed to help users progressively translate high-level analytical goals into low-level tasks, producing visualizations and deriving insights. Specifically, we introduce an LLM agent-based task planning and execution strategy, employing a recursive process involving a planner, executor, and controller. The planner is responsible for recommending and decomposing tasks, the executor handles task execution, including data analysis, visualization generation and multi-view composition, and the controller coordinates the interaction between the planner and executor. Building on the framework, we develop a system with a hybrid user interface that includes a task flow diagram for monitoring and managing the task planning process, a visualization panel for interactive data exploration, and a chat view for guiding the model through natural language instructions. We examine the effectiveness of our method through a usage scenario and an expert study 
650 4 |a Journal Article 
700 1 |a Wang, Junjie  |e verfasserin  |4 aut 
700 1 |a Xiang, Linbing  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaowen  |e verfasserin  |4 aut 
700 1 |a Guo, Zifei  |e verfasserin  |4 aut 
700 1 |a Turkay, Cagatay  |e verfasserin  |4 aut 
700 1 |a Zhang, Yu  |e verfasserin  |4 aut 
700 1 |a Chen, Siming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 31(2025), 9 vom: 03. Aug., Seite 6162-6177  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:9  |g day:03  |g month:08  |g pages:6162-6177 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3496112  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2025  |e 9  |b 03  |c 08  |h 6162-6177