Fair Clustering Ensemble With Equal Cluster Capacity

Clustering ensemble has been widely studied in data mining and machine learning. However, the existing clustering ensemble methods do not pay attention to fairness, which is important in real-world applications, especially in applications involving humans. To address this issue, this paper proposes...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 28. Nov.
Auteur principal: Zhou, Peng (Auteur)
Autres auteurs: Li, Rongwen, Ling, Zhaolong, Du, Liang, Liu, Xinwang
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM385452330
003 DE-627
005 20250509063204.0
007 cr uuu---uuuuu
008 250508s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3507857  |2 doi 
028 5 2 |a pubmed25n1341.xml 
035 |a (DE-627)NLM385452330 
035 |a (NLM)40030335 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Peng  |e verfasserin  |4 aut 
245 1 0 |a Fair Clustering Ensemble With Equal Cluster Capacity 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Clustering ensemble has been widely studied in data mining and machine learning. However, the existing clustering ensemble methods do not pay attention to fairness, which is important in real-world applications, especially in applications involving humans. To address this issue, this paper proposes a novel fair clustering ensemble method, which takes multiple base clustering results as inputs and learns a fair consensus clustering result. When designing the algorithm, we observe that one of the widely used definitions of fairness may cause a cluster imbalance problem. To tackle this problem, we give a new definition of fairness that can simultaneously characterize fairness and cluster capacity equality. Based on this new definition, we design an extremely simple yet effective regularized term to achieve fairness and cluster capacity equality. We plug this regularized term into our clustering ensemble framework, finally leading to our new fair clustering ensemble method. The extensive experiments show that, compared with the state-of-the-art clustering ensemble methods, our method can not only achieve a comparable or even better clustering performance, but also obtain a much fairer and better capacity equality result, which well demonstrates the effectiveness and superiority of our method 
650 4 |a Journal Article 
700 1 |a Li, Rongwen  |e verfasserin  |4 aut 
700 1 |a Ling, Zhaolong  |e verfasserin  |4 aut 
700 1 |a Du, Liang  |e verfasserin  |4 aut 
700 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 28. Nov.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:28  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3507857  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 28  |c 11