Commonality Feature Representation Learning for Unsupervised Multimodal Change Detection
The main challenge of multimodal change detection (MCD) is that multimodal bitemporal images (MBIs) cannot be compared directly to identify changes. To overcome this problem, this paper proposes a novel commonality feature representation learning (CFRL) and constructs a CFRL-based unsupervised MCD f...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 22., Seite 1219-1233
|
Auteur principal: |
Liu, Tongfei
(Auteur) |
Autres auteurs: |
Zhang, Mingyang,
Gong, Maoguo,
Zhang, Qingfu,
Jiang, Fenlong,
Zheng, Hanhong,
Lu, Di |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2025
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Sujets: | Journal Article |