Commonality Feature Representation Learning for Unsupervised Multimodal Change Detection

The main challenge of multimodal change detection (MCD) is that multimodal bitemporal images (MBIs) cannot be compared directly to identify changes. To overcome this problem, this paper proposes a novel commonality feature representation learning (CFRL) and constructs a CFRL-based unsupervised MCD f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 22., Seite 1219-1233
1. Verfasser: Liu, Tongfei (VerfasserIn)
Weitere Verfasser: Zhang, Mingyang, Gong, Maoguo, Zhang, Qingfu, Jiang, Fenlong, Zheng, Hanhong, Lu, Di
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM38507865X
003 DE-627
005 20250509104109.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3539461  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM38507865X 
035 |a (NLM)40031527 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Tongfei  |e verfasserin  |4 aut 
245 1 0 |a Commonality Feature Representation Learning for Unsupervised Multimodal Change Detection 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The main challenge of multimodal change detection (MCD) is that multimodal bitemporal images (MBIs) cannot be compared directly to identify changes. To overcome this problem, this paper proposes a novel commonality feature representation learning (CFRL) and constructs a CFRL-based unsupervised MCD framework. The CFRL is composed of a Siamese-based encoder and two decoders. First, the Siamese-based encoder can map original MBIs in the same feature space for extracting the representative features of each modality. Then, the two decoders are used to reconstruct the original MBIs by regressing themselves, respectively. Meanwhile, we swap the decoders to reconstruct the pseudo-MBIs to conduct modality alignment. Subsequently, all reconstructed images are input to the Siamese-based encoder again to map them in a same feature space, by which representative features are obtained. On this basis, latent commonality features between MBIs can be extracted by minimizing the distance between these representative features. These latent commonality features are comparable and can be used to identify changes. Notably, the proposed CFRL can be performed simultaneously in two modalities corresponding to MBIs. Therefore, two change magnitude images (CMIs) can be generated simultaneously by measuring the difference between the commonality features of MBIs. Finally, a simple threshold algorithm or a clustering algorithm can be employed to divide CMIs into binary change maps. Extensive experiments on six publicly available MCD datasets show that the proposed CFRL-based framework can achieve superior performance compared with other state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Zhang, Mingyang  |e verfasserin  |4 aut 
700 1 |a Gong, Maoguo  |e verfasserin  |4 aut 
700 1 |a Zhang, Qingfu  |e verfasserin  |4 aut 
700 1 |a Jiang, Fenlong  |e verfasserin  |4 aut 
700 1 |a Zheng, Hanhong  |e verfasserin  |4 aut 
700 1 |a Lu, Di  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 22., Seite 1219-1233  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:22  |g pages:1219-1233 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3539461  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 22  |h 1219-1233