VISTA : A Visual Analytics Framework to Enhance Foundation Model-Generated Data Labels
The advances in multi-modal foundation models (FMs) (e.g., CLIP and LLaVA) have facilitated the auto-labeling of large-scale datasets, enhancing model performance in challenging downstream tasks such as open-vocabulary object detection and segmentation. However, the quality of FM-generated labels is...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on visualization and computer graphics. - 1996. - PP(2025) vom: 29. Jan.
|
Auteur principal: |
Xuan, Xiwei
(Auteur) |
Autres auteurs: |
Wang, Xiaoqi,
He, Wenbin,
Ono, Jorge Piazentin,
Gou, Liang,
Ma, Kwan-Liu,
Ren, Liu |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2025
|
Accès à la collection: | IEEE transactions on visualization and computer graphics
|
Sujets: | Journal Article |