Physically Realizable Adversarial Creating Attack against Vision-based BEV Space 3D Object Detection

Vision-based 3D object detection, a cost-effective alternative to LiDAR-based solutions, plays a crucial role in modern autonomous driving systems. Meanwhile, deep models have been proven susceptible to adversarial examples, and attacking detection models can lead to serious driving consequences. Mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 10. Jan.
1. Verfasser: Wang, Jian (VerfasserIn)
Weitere Verfasser: Li, Fan, Lv, Song, He, Lijun, Shen, Chao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM385073194
003 DE-627
005 20250508053501.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3526056  |2 doi 
028 5 2 |a pubmed25n1332.xml 
035 |a (DE-627)NLM385073194 
035 |a (NLM)40030990 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jian  |e verfasserin  |4 aut 
245 1 0 |a Physically Realizable Adversarial Creating Attack against Vision-based BEV Space 3D Object Detection 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Vision-based 3D object detection, a cost-effective alternative to LiDAR-based solutions, plays a crucial role in modern autonomous driving systems. Meanwhile, deep models have been proven susceptible to adversarial examples, and attacking detection models can lead to serious driving consequences. Most previous adversarial attacks targeted 2D detectors by placing the patch in a specific region within the object's bounding box in the image, allowing it to evade detection. However, attacking 3D detector is more difficult because the adversary may be observed from different viewpoints and distances, and there is a lack of effective methods to differentiably render the 3D space poster onto the image. In this paper, we propose a novel attack setting where a carefully crafted adversarial poster (looks like meaningless graffiti) is learned and pasted on the road surface, inducing the vision-based 3D detectors to perceive a non-existent object. We show that even a single 2D poster is sufficient to deceive the 3D detector with the desired attack effect, and the poster is universal, which is effective across various scenes, viewpoints, and distances. To generate the poster, an image-3D applying algorithm is devised to establish the pixel-wise mapping relationship between the image area and the 3D space poster so that the poster can be optimized through standard backpropagation. Moreover, a ground-truth masked optimization strategy is presented to effectively learn the poster without interference from scene objects. Extensive results including real-world experiments validate the effectiveness of our adversarial attack. The transferability and defense strategy are also investigated to comprehensively understand the proposed attack 
650 4 |a Journal Article 
700 1 |a Li, Fan  |e verfasserin  |4 aut 
700 1 |a Lv, Song  |e verfasserin  |4 aut 
700 1 |a He, Lijun  |e verfasserin  |4 aut 
700 1 |a Shen, Chao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2025) vom: 10. Jan.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:10  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3526056  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 10  |c 01