Friction Memory Ionogels With Hysteretic Sticky-Slippery Transition via Thermolocking the Metastable state

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 13 vom: 02. Apr., Seite e2416250
1. Verfasser: Chai, Jiaqi (VerfasserIn)
Weitere Verfasser: Ru, Yunfei, Jia, Yuchen, Yang, Yingchao, Zhang, Haoyu, Chen, Lie, Zhao, Tianyi, Liu, Mingjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article friction memory ionogels metastable state phase separation
LEADER 01000caa a22002652c 4500
001 NLM384956556
003 DE-627
005 20250509100109.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202416250  |2 doi 
028 5 2 |a pubmed25n1362.xml 
035 |a (DE-627)NLM384956556 
035 |a (NLM)40018829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chai, Jiaqi  |e verfasserin  |4 aut 
245 1 0 |a Friction Memory Ionogels With Hysteretic Sticky-Slippery Transition via Thermolocking the Metastable state 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Many biological organisms possess adaptive friction states and display hysteretic friction recovery, allowing them to achieve specific friction memory after environment change. However, current artificial materials have limitations in maintaining on-demand friction states upon withdrawal of external triggers due to their strong dependence on external stimulus. Here, thermally induced phase separation ionogels with friction memory are reported. The kinetic difference between the evolution of bulk condensed structure and the adsorption of surface droplets after removing external stimulus delayed the recovery of friction state transition from slippery to sticky, thus achieving responsive friction memory. In addition, the metastable intermediate state generated during phase separation could be locked through vitrification, resulting in three distinct friction states determined by the synergy of stiffness and surface properties, including sticky state (coefficient of friction of 1.8), medium state (0.3-0.5) and slippery state (0.03-0.07). As a proof-of-concept, smart devices with diverse surface friction performance are engineered to realize various functions, including recognition of thermal range for target objects, de-icing, and movement manipulation. These results provide new insights for expanding the applications of ionogels in state-of-the-art soft robotics and haptic engineering, offering fresh perspectives for further development of these fields 
650 4 |a Journal Article 
650 4 |a friction memory 
650 4 |a ionogels 
650 4 |a metastable state 
650 4 |a phase separation 
700 1 |a Ru, Yunfei  |e verfasserin  |4 aut 
700 1 |a Jia, Yuchen  |e verfasserin  |4 aut 
700 1 |a Yang, Yingchao  |e verfasserin  |4 aut 
700 1 |a Zhang, Haoyu  |e verfasserin  |4 aut 
700 1 |a Chen, Lie  |e verfasserin  |4 aut 
700 1 |a Zhao, Tianyi  |e verfasserin  |4 aut 
700 1 |a Liu, Mingjie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 13 vom: 02. Apr., Seite e2416250  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:13  |g day:02  |g month:04  |g pages:e2416250 
856 4 0 |u http://dx.doi.org/10.1002/adma.202416250  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 13  |b 02  |c 04  |h e2416250