Multi-stage deep learning artifact reduction for parallel-beam computed tomography

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 32(2025), Pt 2 vom: 01. März, Seite 442-456
1. Verfasser: Shi, Jiayang (VerfasserIn)
Weitere Verfasser: Pelt, Daniël M, Batenburg, K Joost
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article artifact reduction computed tomography deep learning ring artifacts
LEADER 01000caa a22002652c 4500
001 NLM38440393X
003 DE-627
005 20250509063115.0
007 cr uuu---uuuuu
008 250508s2025 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577525000359  |2 doi 
028 5 2 |a pubmed25n1341.xml 
035 |a (DE-627)NLM38440393X 
035 |a (NLM)39960472 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Jiayang  |e verfasserin  |4 aut 
245 1 0 |a Multi-stage deep learning artifact reduction for parallel-beam computed tomography 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a open access. 
520 |a Computed tomography (CT) using synchrotron radiation is a powerful technique that, compared with laboratory CT techniques, boosts high spatial and temporal resolution while also providing access to a range of contrast-formation mechanisms. The acquired projection data are typically processed by a computational pipeline composed of multiple stages. Artifacts introduced during data acquisition can propagate through the pipeline and degrade image quality in the reconstructed images. Recently, deep learning has shown significant promise in enhancing image quality for images representing scientific data. This success has driven increasing adoption of deep learning techniques in CT imaging. Various approaches have been proposed to incorporate deep learning into computational pipelines, but each has limitations in addressing artifacts effectively and efficiently in synchrotron CT, either in properly addressing the specific artifacts or in computational efficiency. Recognizing these challenges, we introduce a novel method that incorporates separate deep learning models at each stage of the tomography pipeline - projection, sinogram and reconstruction - to address specific artifacts locally in a data-driven way. Our approach includes bypass connections that feed both the outputs from previous stages and raw data to subsequent stages, minimizing the risk of error propagation. Extensive evaluations on both simulated and real-world datasets illustrate that our approach effectively reduces artifacts and outperforms comparison methods 
650 4 |a Journal Article 
650 4 |a artifact reduction 
650 4 |a computed tomography 
650 4 |a deep learning 
650 4 |a ring artifacts 
700 1 |a Pelt, Daniël M  |e verfasserin  |4 aut 
700 1 |a Batenburg, K Joost  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 32(2025), Pt 2 vom: 01. März, Seite 442-456  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnas 
773 1 8 |g volume:32  |g year:2025  |g number:Pt 2  |g day:01  |g month:03  |g pages:442-456 
856 4 0 |u http://dx.doi.org/10.1107/S1600577525000359  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 32  |j 2025  |e Pt 2  |b 01  |c 03  |h 442-456